Permutation-Invariant Variational Autoencoder for Graph-Level
Representation Learning
- URL: http://arxiv.org/abs/2104.09856v1
- Date: Tue, 20 Apr 2021 09:44:41 GMT
- Title: Permutation-Invariant Variational Autoencoder for Graph-Level
Representation Learning
- Authors: Robin Winter, Frank No\'e, Djork-Arn\'e Clevert
- Abstract summary: We propose a permutation-invariant variational autoencoder for graph structured data.
Our model indirectly learns to match the node ordering of input and output graph, without imposing a particular node ordering.
We demonstrate the effectiveness of our proposed model on various graph reconstruction and generation tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been great success in applying deep neural networks on
graph structured data. Most work, however, focuses on either node- or
graph-level supervised learning, such as node, link or graph classification or
node-level unsupervised learning (e.g. node clustering). Despite its wide range
of possible applications, graph-level unsupervised learning has not received
much attention yet. This might be mainly attributed to the high representation
complexity of graphs, which can be represented by n! equivalent adjacency
matrices, where n is the number of nodes. In this work we address this issue by
proposing a permutation-invariant variational autoencoder for graph structured
data. Our proposed model indirectly learns to match the node ordering of input
and output graph, without imposing a particular node ordering or performing
expensive graph matching. We demonstrate the effectiveness of our proposed
model on various graph reconstruction and generation tasks and evaluate the
expressive power of extracted representations for downstream graph-level
classification and regression.
Related papers
- Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks [16.14454388348814]
We present a class of universal, permutation-equivariant graph networks.
They offer a fine-grained control between expressivity and scalability and adapt to the sparsity of the graph.
These architectures lead to vastly reduced computation times compared to standard higher-order graph networks.
arXiv Detail & Related papers (2022-03-25T21:17:09Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
Graph representation learning methods generate numerical vector representations for the nodes in a network.
In this work, we propose Inferential SIR-GN, a model which is pre-trained on random graphs, then computes node representations rapidly.
We demonstrate that the model is able to capture node's structural role information, and show excellent performance at node and graph classification tasks, on unseen networks.
arXiv Detail & Related papers (2021-11-08T20:56:37Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
We present an unsupervised graph representation learning method, Unsupervised Hierarchical Graph Representation (UHGR)
Our method focuses on maximizing mutual information between "local" and high-level "global" representations.
The results show that the proposed method achieves comparable results to state-of-the-art supervised methods on several benchmarks.
arXiv Detail & Related papers (2020-03-18T18:21:48Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
We propose a permutation invariant approach to modeling graphs, using the recent framework of score-based generative modeling.
In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph.
For graph generation, we find that our learning approach achieves better or comparable results to existing models on benchmark datasets.
arXiv Detail & Related papers (2020-03-02T03:06:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.