論文の概要: Noisy Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2102.04877v1
- Date: Tue, 9 Feb 2021 15:20:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 18:52:16.351164
- Title: Noisy Recurrent Neural Networks
- Title(参考訳): ノイズリカレントニューラルネットワーク
- Authors: Soon Hoe Lim, N. Benjamin Erichson, Liam Hodgkinson, Michael W.
Mahoney
- Abstract要約: 入力データによって駆動される微分方程式の離散化として,隠れ状態に雑音を注入することによって訓練されたリカレントニューラルネットワーク(RNN)について検討する。
合理的な仮定の下では、この暗黙の正則化はより平坦なミニマムを促進し、より安定な力学を持つモデルに偏りを呈し、分類タスクではより大きな分類マージンを持つモデルを好む。
本理論は, 各種入力摂動に対するロバスト性の向上と, 最先端性能の維持を両立させる実証実験により支持された。
- 参考スコア(独自算出の注目度): 45.94390701863504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide a general framework for studying recurrent neural networks (RNNs)
trained by injecting noise into hidden states. Specifically, we consider RNNs
that can be viewed as discretizations of stochastic differential equations
driven by input data. This framework allows us to study the implicit
regularization effect of general noise injection schemes by deriving an
approximate explicit regularizer in the small noise regime. We find that, under
reasonable assumptions, this implicit regularization promotes flatter minima;
it biases towards models with more stable dynamics; and, in classification
tasks, it favors models with larger classification margin. Sufficient
conditions for global stability are obtained, highlighting the phenomenon of
stochastic stabilization, where noise injection can improve stability during
training. Our theory is supported by empirical results which demonstrate
improved robustness with respect to various input perturbations, while
maintaining state-of-the-art performance.
- Abstract(参考訳): 隠れた状態にノイズを注入して訓練されたリカレントニューラルネットワーク(RNN)を研究するための一般的なフレームワークを提供する。
具体的には、入力データによって駆動される確率微分方程式の離散化とみなすことができるRNNを考える。
この枠組みにより,小雑音領域における近似的正則化子を導出することにより,一般騒音注入スキームの暗黙的正則化効果を検証できる。
合理的な仮定の下では、この暗黙の正規化はよりフラットな最小化を促進し、より安定したダイナミクスを持つモデルに偏り、分類タスクではより大きな分類マージンを持つモデルを好むことが分かる。
大域的安定のための十分な条件が得られ、トレーニング中にノイズ注入により安定性が向上する確率的安定化現象が浮き彫りになった。
本理論は, 各種入力摂動に対するロバスト性の向上と, 最先端性能の維持を両立させる実証実験により支持された。
関連論文リスト
- Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
擬似ラベルノイズは主に不安定なサンプルに含まれており、ほとんどのピクセルの予測は自己学習中に大きく変化する。
我々は, 安定・不安定な試料を効果的に発見する, SND(Stable Neighbor Denoising)アプローチを導入する。
SNDは、様々なSFUDAセマンティックセグメンテーション設定における最先端メソッドよりも一貫して優れている。
論文 参考訳(メタデータ) (2024-06-10T21:44:52Z) - Noise Injection Node Regularization for Robust Learning [0.0]
ノイズインジェクションノード規則化(NINR)は、トレーニング期間中に、構造化されたノイズをディープニューラルネットワーク(DNN)に注入する手法である。
本研究は、NINRの下で訓練されたフィードフォワードDNNに対する各種試験データ摂動に対するロバスト性を大幅に改善する理論的および実証的な証拠を示す。
論文 参考訳(メタデータ) (2022-10-27T20:51:15Z) - Sparsity in Continuous-Depth Neural Networks [2.969794498016257]
重みと特徴空間が予測および基礎となる動的法則の同定に与える影響について検討する。
ヒトのモーションキャプチャーとヒト造血幹細胞RNA-seqデータからなる実世界のデータセットをキュレートする。
論文 参考訳(メタデータ) (2022-10-26T12:48:12Z) - Label noise (stochastic) gradient descent implicitly solves the Lasso
for quadratic parametrisation [14.244787327283335]
本研究では, 連続時間モデルを用いて, 4次パラメトリッドモデルのトレーニング力学におけるラベルノイズの役割について検討する。
本研究は,構造ノイズがより高度な一般化を誘導し,実際に観察されるダイナミックスの性能の向上を説明できることを示すものである。
論文 参考訳(メタデータ) (2022-06-20T15:24:42Z) - NoisyMix: Boosting Robustness by Combining Data Augmentations, Stability
Training, and Noise Injections [46.745755900939216]
モデルロバスト性とドメイン内精度の両方を改善するために,データ拡張と安定性トレーニングとノイズ注入を組み合わせたトレーニングスキームであるNoisyMixを導入する。
我々は、ImageNet-C、ImageNet-R、ImageNet-Pなど、さまざまなベンチマークデータセットに対して、NoisyMixの利点を実証する。
論文 参考訳(メタデータ) (2022-02-02T19:53:35Z) - Robust Learning of Recurrent Neural Networks in Presence of Exogenous
Noise [22.690064709532873]
入力雑音を受けるRNNモデルに対するトラクタブルロバストネス解析を提案する。
線形化手法を用いてロバストネス測度を効率的に推定することができる。
提案手法はリカレントニューラルネットワークのロバスト性を大幅に改善する。
論文 参考訳(メタデータ) (2021-05-03T16:45:05Z) - Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections [73.95786440318369]
我々は、勾配降下(SGD)のダイナミクスに対する注射ノイズの影響であるGNIsのいわゆる暗黙効果に焦点を当てています。
この効果は勾配更新に非対称な重尾ノイズを誘発することを示す。
そして、GNIが暗黙のバイアスを引き起こすことを正式に証明し、これは尾の重みと非対称性のレベルによって異なる。
論文 参考訳(メタデータ) (2021-02-13T21:28:09Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
最近のランダムな平滑化技術は、最悪の$ell$-robustnessを平均ケースのロバストネスに変換することができることを示している。
その結果,スムーズな分類器の精度と信頼性の高いロバスト性とのトレードオフは,ノイズに対する予測一貫性の規則化によって大きく制御できることが判明した。
論文 参考訳(メタデータ) (2020-06-07T06:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。