Simulating collider physics on quantum computers using effective field
theories
- URL: http://arxiv.org/abs/2102.05044v1
- Date: Tue, 9 Feb 2021 19:00:00 GMT
- Title: Simulating collider physics on quantum computers using effective field
theories
- Authors: Christian W. Bauer, Marat Freytsis and Benjamin Nachman
- Abstract summary: Field theories (EFTs) provide an efficient mechanism to separate the high energy dynamics from the dynamics at low energy.
We show how quantum algorithms can be used to simulate the dynamics of the low energy EFT from first principles.
Calculations are performed using simulations of a quantum computer as well as measurements using the IBMQ Manhattan machine.
- Score: 1.76179873429447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating the full dynamics of a quantum field theory over a wide range of
energies requires exceptionally large quantum computing resources. Yet for many
observables in particle physics, perturbative techniques are sufficient to
accurately model all but a constrained range of energies within the validity of
the theory. We demonstrate that effective field theories (EFTs) provide an
efficient mechanism to separate the high energy dynamics that is easily
calculated by traditional perturbation theory from the dynamics at low energy
and show how quantum algorithms can be used to simulate the dynamics of the low
energy EFT from first principles. As an explicit example we calculate the
expectation values of vacuum-to-vacuum and vacuum-to-one-particle transitions
in the presence of a time-ordered product of two Wilson lines in scalar field
theory, an object closely related to those arising in EFTs of the Standard
Model of particle physics. Calculations are performed using simulations of a
quantum computer as well as measurements using the IBMQ Manhattan machine.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Algorithms for Simulating Nuclear Effective Field Theories [40.83664249192338]
We use state-of-the-art Hamiltonian-simulation methods to estimate the qubit and gate costs to simulate low-energy effective field theories (EFTs) of nuclear physics.
We demonstrate how symmetries of the low-energy nuclear Hamiltonians can be utilized to obtain tighter error bounds on the simulation algorithm.
arXiv Detail & Related papers (2023-12-08T20:09:28Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Thermalization dynamics of a gauge theory on a quantum simulator [6.039858993863839]
Gauge theories form the foundation of modern physics.
We perform quantum simulations of the unitary dynamics of a U(1) symmetric gauge field theory.
We investigate global quantum quenches and the equilibration to a steady state well approximated by a thermal ensemble.
arXiv Detail & Related papers (2021-07-28T18:00:01Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.