Quantum-classical simulation of quantum field theory by quantum circuit
learning
- URL: http://arxiv.org/abs/2311.16297v1
- Date: Mon, 27 Nov 2023 20:18:39 GMT
- Title: Quantum-classical simulation of quantum field theory by quantum circuit
learning
- Authors: Kazuki Ikeda
- Abstract summary: We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We employ quantum circuit learning to simulate quantum field theories (QFTs).
Typically, when simulating QFTs with quantum computers, we encounter
significant challenges due to the technical limitations of quantum devices when
implementing the Hamiltonian using Pauli spin matrices. To address this
challenge, we leverage quantum circuit learning, employing a compact
configuration of qubits and low-depth quantum circuits to predict real-time
dynamics in quantum field theories. The key advantage of this approach is that
a single-qubit measurement can accurately forecast various physical parameters,
including fully-connected operators. To demonstrate the effectiveness of our
method, we use it to predict quench dynamics, chiral dynamics and jet
production in a 1+1-dimensional model of quantum electrodynamics. We find that
our predictions closely align with the results of rigorous classical
calculations, exhibiting a high degree of accuracy. This hybrid
quantum-classical approach illustrates the feasibility of efficiently
simulating large-scale QFTs on cutting-edge quantum devices.
Related papers
- An Efficient Classical Algorithm for Simulating Short Time 2D Quantum Dynamics [2.891413712995642]
We introduce an efficient classical algorithm for simulating short-time dynamics in 2D quantum systems.
Our results reveal the inherent simplicity in the complexity of short-time 2D quantum dynamics.
This work advances our understanding of the boundary between classical and quantum computation.
arXiv Detail & Related papers (2024-09-06T09:59:12Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories.
We show that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly.
arXiv Detail & Related papers (2020-04-28T01:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.