Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps
- URL: http://arxiv.org/abs/2301.03931v1
- Date: Tue, 10 Jan 2023 12:18:47 GMT
- Title: Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps
- Authors: Volkan Cevher, Georgios Piliouras, Ryann Sim, Stratis Skoulakis
- Abstract summary: We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
- Score: 77.8999425439444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a first-order method that admits near-optimal
convergence rates for convex/concave min-max problems while requiring a simple
and intuitive analysis. Similarly to the seminal work of Nemirovski and the
recent approach of Piliouras et al. in normal form games, our work is based on
the fact that the update rule of the Proximal Point method (PP) can be
approximated up to accuracy $\epsilon$ with only $\mathcal{O}(\log 1/\epsilon)$
additional gradient-calls through the iterations of a contraction map. Then
combining the analysis of (PP) method with an error-propagation analysis we
establish that the resulting first order method, called \textit{Clairvoyant
Extra Gradient}, admits near-optimal time-average convergence for general
domains and last-iterate convergence in the unconstrained case.
Related papers
- A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Accelerated first-order methods for convex optimization with locally
Lipschitz continuous gradient [0.0]
We first consider unconstrained convex optimization with Lipschitz continuous gradient (LLCG) and propose accelerated proximal gradient (APG) methods for solving it.
The proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation complexity of $cal O(varepsilon-1/2log varepsilon-1)$.
Preliminary numerical results are presented to demonstrate the performance of our proposed methods.
arXiv Detail & Related papers (2022-06-02T10:34:26Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
We show the worst-case complexity of convergence $tildeO(t-1/4)$ and MoreautildeO(vareps-4)$ for smooth non- optimization.
We obtain first online nonnegative matrix factorization algorithms for dependent data based on projected gradient methods with adaptive step sizes and optimal convergence.
arXiv Detail & Related papers (2022-03-29T17:59:10Z) - Generalized Optimistic Methods for Convex-Concave Saddle Point Problems [24.5327016306566]
The optimistic method has seen increasing popularity for solving convex-concave saddle point problems.
We develop a backtracking line search scheme to select the step sizes without knowledge of coefficients.
arXiv Detail & Related papers (2022-02-19T20:31:05Z) - Finite-Sample Analysis for Two Time-scale Non-linear TDC with General
Smooth Function Approximation [27.149240954363496]
We develop novel techniques to explicitly characterize the finite-sample error bound for the general off-policy setting.
Our approach can be applied to a wide range of T-based learning algorithms with general smooth function approximation.
arXiv Detail & Related papers (2021-04-07T00:34:11Z) - A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints [10.578409461429626]
In this work, we adapt the integral quadratic constraints theory to first-order methods for smooth and strongly-varying games and iteration.
We provide emphfor the first time a global convergence rate for the negative momentum method(NM) with an complexity $mathcalO(kappa1.5)$, which matches its known lower bound.
We show that it is impossible for an algorithm with one step of memory to achieve acceleration if it only queries the gradient once per batch.
arXiv Detail & Related papers (2020-09-23T20:02:00Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Gradient-Free Methods for Saddle-Point Problem [125.99533416395765]
We generalize the approach Gasnikov et. al., 2017, which allows to solve (stochastic) convex optimization problems with an inexact gradient-free oracle.
Our approach reduces $fracnlog n$ times the required number of oracle calls.
In the second part of the paper, we analyze the case when such an assumption cannot be made, we propose a general approach on how to modernize the method to solve this problem.
arXiv Detail & Related papers (2020-05-12T16:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.