論文の概要: Improving Aerial Instance Segmentation in the Dark with Self-Supervised
Low Light Enhancement
- arxiv url: http://arxiv.org/abs/2102.05399v1
- Date: Wed, 10 Feb 2021 12:24:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 14:34:55.137979
- Title: Improving Aerial Instance Segmentation in the Dark with Self-Supervised
Low Light Enhancement
- Title(参考訳): 自己監督型低照度化による暗黒大気中の空洞セグメンテーションの改善
- Authors: Prateek Garg, Murari Mandal, Pratik Narang
- Abstract要約: 空中画像の低照度条件は、視覚ベースのアプリケーションの性能に悪影響を及ぼす。
自己監督型で低照度画像を高めることができる新しい手法を提案する。
GANを用いた新しい低照度航空データセットも提案する。
- 参考スコア(独自算出の注目度): 6.500738558466833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low light conditions in aerial images adversely affect the performance of
several vision based applications. There is a need for methods that can
efficiently remove the low light attributes and assist in the performance of
key vision tasks. In this work, we propose a new method that is capable of
enhancing the low light image in a self-supervised fashion, and sequentially
apply detection and segmentation tasks in an end-to-end manner. The proposed
method occupies a very small overhead in terms of memory and computational
power over the original algorithm and delivers superior results. Additionally,
we propose the generation of a new low light aerial dataset using GANs, which
can be used to evaluate vision based networks for similar adverse conditions.
- Abstract(参考訳): 空中画像における低光度条件は、複数の視覚ベースのアプリケーションの性能に悪影響を及ぼす。
低照度特性を効率的に除去し、キービジョンタスクのパフォーマンスを補助する手法が必要である。
本研究では,低照度イメージを自己監視方式で強化する新しい手法を提案し,検出とセグメンテーションのタスクをエンドツーエンドで順次適用する。
提案手法は当初のアルゴリズムよりもメモリと計算能力の点で非常に小さなオーバーヘッドを占め、優れた結果をもたらす。
さらに,GANを用いた低照度空中データセットを新たに作成し,類似の悪条件下での視覚ベースネットワークの評価に用いる。
関連論文リスト
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
低照度画像強調(LIE)は、低照度環境において劣化した画像を高精度かつ効率的に回収することを目的としている。
近年の先進的なLIE技術は、多くの低正規の光画像対、ネットワークパラメータ、計算資源を必要とするディープニューラルネットワークを使用している。
拡散先行とルックアップテーブルに基づく新しい非教師付きLIEフレームワークを考案し,低照度画像の効率的な回復を実現する。
論文 参考訳(メタデータ) (2024-09-27T16:37:27Z) - ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [6.191556429706728]
不適切な照明は、情報損失や画質の低下を招き、監視などの様々な応用に影響を及ぼす可能性がある。
現在のエンハンスメント技術は、しばしば特定のデータセットを使用して低照度画像を強化するが、様々な現実世界の条件に適応する際の課題は残る。
アダプティブ・ライト・エンハンスメント・ネットワーク (ALEN) を導入し、その主なアプローチは、ローカル照明とグローバル照明の強化が必要であるかどうかを決定するための分類機構を使用することである。
論文 参考訳(メタデータ) (2024-07-29T05:19:23Z) - Unsupervised Image Prior via Prompt Learning and CLIP Semantic Guidance for Low-Light Image Enhancement [25.97198463881292]
本稿では,よりリッチな視覚言語CLIPを利用して,ゼロ参照低照度化手法を提案する。
提案手法はタスクベース性能に関する各種データセット間で一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-05-19T08:06:14Z) - Inhomogeneous illumination image enhancement under ex-tremely low visibility condition [3.534798835599242]
濃霧を通した画像は、物体の検出や認識の曖昧化といったアプリケーションに不可欠な視覚情報を欠いているため、従来の画像処理手法を妨げている。
本稿では,構造微分・積分フィルタ(F)に基づく背景照明を適応的にフィルタし,信号情報のみを向上させる手法を提案する。
提案手法は, 極めて低視認性条件下で信号の明瞭度を著しく向上し, 既存の技術よりも優れており, 深部霧画像への応用に大きく貢献することを示した。
論文 参考訳(メタデータ) (2024-04-26T16:09:42Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
低照度画像強調(LLIE)の課題を考察し,4K解像度と8K解像度の画像からなる大規模データベースを導入する。
我々は、系統的なベンチマーク研究を行い、現在のLLIEアルゴリズムと比較する。
第2のコントリビューションとして,変換器をベースとした低照度化手法であるLLFormerを紹介する。
論文 参考訳(メタデータ) (2022-12-22T09:05:07Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
CIGAN(Cycle-Interactive Generative Adversarial Network)は、低照度画像間の照明分布の転送を改善できるだけでなく、詳細な信号も操作できる。
特に、提案した低照度誘導変換は、低照度GAN生成器から劣化GAN生成器へ、低照度画像の特徴をフォワードする。
論文 参考訳(メタデータ) (2022-07-03T06:37:46Z) - Learning with Nested Scene Modeling and Cooperative Architecture Search
for Low-Light Vision [95.45256938467237]
低照度シーンから撮影された画像は、しばしば深刻な劣化に悩まされる。
低照度画像の視覚的品質を高めるために深層学習法が提案されている。
他の低照度ビジョンアプリケーションを扱うために、これらの拡張テクニックを拡張することは依然として困難である。
論文 参考訳(メタデータ) (2021-12-09T06:08:31Z) - Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement [3.4722706398428493]
低照度画像は人間の知覚とコンピュータビジョンのアルゴリズムの両方に挑戦する。
計算写真やコンピュータビジョンアプリケーションのための低照度画像の啓蒙にアルゴリズムを堅牢にすることが不可欠である。
本稿では,ペア画像の欠如により訓練されたセマンティック誘導ゼロショット低照度拡張ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-03T10:07:36Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。