Student sentiment Analysis Using Classification With Feature Extraction
Techniques
- URL: http://arxiv.org/abs/2102.05439v2
- Date: Fri, 19 Mar 2021 07:35:32 GMT
- Title: Student sentiment Analysis Using Classification With Feature Extraction
Techniques
- Authors: Latika Tamrakar, Dr.Padmavati Shrivastava, Dr. S. M. Ghosh
- Abstract summary: This paper describes the web-based learning and their effectiveness towards students.
We worked on how machine learning techniques like Logistic Regression (LR), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Technical growths have empowered, numerous revolutions in the educational
system by acquainting with technology into the classroom and by elevating the
learning experience. Nowadays Web-based learning is getting much popularity.
This paper describes the web-based learning and their effectiveness towards
students. One of the prime factors in education or learning system is feedback;
it is beneficial to learning if it must be used effectively. In this paper, we
worked on how machine learning techniques like Logistic Regression (LR),
Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT) can be
applied over Web-based learning, emphasis given on sentiment present in the
feedback students. We also work on two types of Feature Extraction Technique
(FETs) namely Count Vector (CVr) or Bag of Words) (BoW) and Term Frequency and
Inverse Document Frequency (TF-IDF) Vector. In the research study, it is our
goal for our proposed LR, SVM, NB, and DT models to classify the presence of
Student Feedback Dataset (SFB) with improved accuracy with cleaned dataset and
feature extraction techniques. The SFB is one of the significant concerns among
the student sentimental analysis.
Related papers
- Ensemble Learning via Knowledge Transfer for CTR Prediction [9.891226177252653]
In this paper, we investigate larger ensemble networks and find three inherent limitations in commonly used ensemble learning method.
We propose a novel model-agnostic Ensemble Knowledge Transfer Framework (EKTF)
Experimental results on five real-world datasets demonstrate the effectiveness and compatibility of EKTF.
arXiv Detail & Related papers (2024-11-25T06:14:20Z) - Lessons Learned from Designing an Open-Source Automated Feedback System
for STEM Education [5.326069675013602]
We present RATsApp, an open-source automated feedback system (AFS) that incorporates research-based features such as formative feedback.
The system focuses on core STEM competencies such as mathematical competence, representational competence, and data literacy.
As an open-source platform, RATsApp encourages public contributions to its ongoing development, fostering a collaborative approach to improve educational tools.
arXiv Detail & Related papers (2024-01-19T07:13:07Z) - On effects of Knowledge Distillation on Transfer Learning [0.0]
We propose a machine learning architecture we call TL+KD that combines knowledge distillation with transfer learning.
We show that using guidance and knowledge from a larger teacher network during fine-tuning, we can improve the student network to achieve better validation performances like accuracy.
arXiv Detail & Related papers (2022-10-18T08:11:52Z) - DMCNet: Diversified Model Combination Network for Understanding
Engagement from Video Screengrabs [0.4397520291340695]
Engagement plays a major role in developing intelligent educational interfaces.
Non-deep learning models are based on the combination of popular algorithms such as Histogram of Oriented Gradient (HOG), Support Vector Machine (SVM), Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF)
The deep learning methods include Densely Connected Convolutional Networks (DenseNet-121), Residual Network (ResNet-18) and MobileNetV1.
arXiv Detail & Related papers (2022-04-13T15:24:38Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - Distilling Knowledge via Knowledge Review [69.15050871776552]
We study the factor of connection path cross levels between teacher and student networks, and reveal its great importance.
For the first time in knowledge distillation, cross-stage connection paths are proposed.
Our finally designed nested and compact framework requires negligible overhead, and outperforms other methods on a variety of tasks.
arXiv Detail & Related papers (2021-04-19T04:36:24Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
Collaborative Filtering (CF) based recommendation methods have been widely studied.
We propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet)
In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network.
arXiv Detail & Related papers (2021-03-10T14:59:23Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
We present a self-training framework, SLADE, to improve retrieval performance by leveraging additional unlabeled data.
We first train a teacher model on the labeled data and use it to generate pseudo labels for the unlabeled data.
We then train a student model on both labels and pseudo labels to generate final feature embeddings.
arXiv Detail & Related papers (2020-11-20T08:26:10Z) - Privileged Knowledge Distillation for Online Action Detection [114.5213840651675]
Online Action Detection (OAD) in videos is proposed as a per-frame labeling task to address the real-time prediction tasks.
This paper presents a novel learning-with-privileged based framework for online action detection where the future frames only observable at the training stages are considered as a form of privileged information.
arXiv Detail & Related papers (2020-11-18T08:52:15Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
In this paper, we analyse the main drawbacks of current active learning techniques.
We do a systematic study on the effects of the most common issues of real-world datasets on the deep active learning process.
We derive two techniques that can speed up the active learning loop such as partial uncertainty sampling and larger query size.
arXiv Detail & Related papers (2020-06-17T14:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.