BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism
- URL: http://arxiv.org/abs/2103.06105v1
- Date: Wed, 10 Mar 2021 14:59:23 GMT
- Title: BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism
- Authors: Chang-Dong Wang, Zi-Yuan Hu, Jin Huang, Zhi-Hong Deng, Ling Huang,
Jian-Huang Lai and Philip S. Yu
- Abstract summary: Collaborative Filtering (CF) based recommendation methods have been widely studied.
We propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet)
In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network.
- Score: 106.43103176833371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative Filtering (CF) based recommendation methods have been widely
studied, which can be generally categorized into two types, i.e.,
representation learning-based CF methods and matching function learning-based
CF methods. Representation learning tries to learn a common low dimensional
space for the representations of users and items. In this case, a user and item
match better if they have higher similarity in that common space. Matching
function learning tries to directly learn the complex matching function that
maps user-item pairs to matching scores. Although both methods are well
developed, they suffer from two fundamental flaws, i.e., the representation
learning resorts to applying a dot product which has limited expressiveness on
the latent features of users and items, while the matching function learning
has weakness in capturing low-rank relations. To overcome such flaws, we
propose a novel recommendation model named Balanced Collaborative Filtering
Network (BCFNet), which has the strengths of the two types of methods. In
addition, an attention mechanism is designed to better capture the hidden
information within implicit feedback and strengthen the learning ability of the
neural network. Furthermore, a balance module is designed to alleviate the
over-fitting issue in DNNs. Extensive experiments on eight real-world datasets
demonstrate the effectiveness of the proposed model.
Related papers
- FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks [4.097623533226476]
We propose the Feature-aware Fusion Correlation Neural Network (FaFCNN), which introduces a feature-aware interaction module and a feature alignment module based on domain adversarial learning.
The experimental results show that training using augmented features obtained by pre-training gradient boosting decision tree yields more performance gains than random-forest based methods.
arXiv Detail & Related papers (2023-07-24T04:23:08Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Learning Modular Structures That Generalize Out-of-Distribution [1.7034813545878589]
We describe a method for O.O.D. generalization that, through training, encourages models to only preserve features in the network that are well reused across multiple training domains.
Our method combines two complementary neuron-level regularizers with a probabilistic differentiable binary mask over the network, to extract a modular sub-network that achieves better O.O.D. performance than the original network.
arXiv Detail & Related papers (2022-08-07T15:54:19Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - SelfCF: A Simple Framework for Self-supervised Collaborative Filtering [72.68215241599509]
Collaborative filtering (CF) is widely used to learn informative latent representations of users and items from observed interactions.
We propose a self-supervised collaborative filtering framework (SelfCF) that is specially designed for recommender scenario with implicit feedback.
We show that SelfCF can boost up the accuracy by up to 17.79% on average, compared with a self-supervised framework BUIR.
arXiv Detail & Related papers (2021-07-07T05:21:12Z) - Network Support for High-performance Distributed Machine Learning [17.919773898228716]
We propose a system model that captures both learning nodes (that perform computations) and information nodes (that provide data)
We then formulate the problem of selecting (i) which learning and information nodes should cooperate to complete the learning task, and (ii) the number of iterations to perform.
We devise an algorithm, named DoubleClimb, that can find a 1+1/|I|-competitive solution with cubic worst-case complexity.
arXiv Detail & Related papers (2021-02-05T19:38:57Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.