Civil Rephrases Of Toxic Texts With Self-Supervised Transformers
- URL: http://arxiv.org/abs/2102.05456v2
- Date: Thu, 11 Feb 2021 14:11:35 GMT
- Title: Civil Rephrases Of Toxic Texts With Self-Supervised Transformers
- Authors: Leo Laugier, John Pavlopoulos, Jeffrey Sorensen, Lucas Dixon
- Abstract summary: This work focuses on models that can help suggest rephrasings of toxic comments in a more civil manner.
Inspired by recent progress in unpaired sequence-to-sequence tasks, a self-supervised learning model is introduced, called CAE-T5.
- Score: 4.615338063719135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Platforms that support online commentary, from social networks to news sites,
are increasingly leveraging machine learning to assist their moderation
efforts. But this process does not typically provide feedback to the author
that would help them contribute according to the community guidelines. This is
prohibitively time-consuming for human moderators to do, and computational
approaches are still nascent. This work focuses on models that can help suggest
rephrasings of toxic comments in a more civil manner. Inspired by recent
progress in unpaired sequence-to-sequence tasks, a self-supervised learning
model is introduced, called CAE-T5. CAE-T5 employs a pre-trained text-to-text
transformer, which is fine tuned with a denoising and cyclic auto-encoder loss.
Experimenting with the largest toxicity detection dataset to date (Civil
Comments) our model generates sentences that are more fluent and better at
preserving the initial content compared to earlier text style transfer systems
which we compare with using several scoring systems and human evaluation.
Related papers
- Assessment of Transformer-Based Encoder-Decoder Model for Human-Like Summarization [0.05852077003870416]
This work leverages transformer-based BART model for human-like summarization.
On training and fine-tuning the encoder-decoder model, it is tested with diverse sample articles.
The finetuned model performance is compared with the baseline pretrained model.
Empirical results on BBC News articles highlight that the gold standard summaries written by humans are more factually consistent by 17%.
arXiv Detail & Related papers (2024-10-22T09:25:04Z) - Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams [49.3179290313959]
This study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models.
We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions.
Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification.
arXiv Detail & Related papers (2024-03-18T23:41:52Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
We present textscUltraFeedback, a large-scale, high-quality, and diversified AI feedback dataset.
Our work validates the effectiveness of scaled AI feedback data in constructing strong open-source chat language models.
arXiv Detail & Related papers (2023-10-02T17:40:01Z) - Weigh Your Own Words: Improving Hate Speech Counter Narrative Generation
via Attention Regularization [31.40751207207214]
Recent computational approaches for combating online hate speech involve the automatic generation of counter narratives.
This paper introduces novel attention regularization methodologies to improve the generalization capabilities of PLMs.
Regularized models produce better counter narratives than state-of-the-art approaches in most cases.
arXiv Detail & Related papers (2023-09-05T15:27:22Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
Conceptually, LOCCO can be viewed as a form of self-learning where the semantic being trained is used to generate annotations for unlabeled text.
As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model.
arXiv Detail & Related papers (2023-05-31T16:47:20Z) - RL4F: Generating Natural Language Feedback with Reinforcement Learning
for Repairing Model Outputs [27.777809444120827]
Previous work proposed providing language models with natural language feedback to guide them in repairing their outputs.
We introduce RL4F, a multi-agent collaborative framework where critique generator is trained to maximize end-task performance of GPT-3.
We show relative improvements up to 10% in multiple text similarity metrics over other learned, retrieval-augmented or prompting-based critique generators.
arXiv Detail & Related papers (2023-05-15T17:57:16Z) - Accountable Textual-Visual Chat Learns to Reject Human Instructions in
Image Re-creation [26.933683814025475]
We introduce two novel multimodal datasets: the synthetic CLEVR-ATVC dataset (620K) and the manually pictured Fruit-ATVC dataset (50K).
These datasets incorporate both visual and text-based inputs and outputs.
To facilitate the accountability of multimodal systems in rejecting human requests, similar to language-based ChatGPT conversations, we introduce specific rules as supervisory signals within the datasets.
arXiv Detail & Related papers (2023-03-10T15:35:11Z) - Non-Parametric Online Learning from Human Feedback for Neural Machine
Translation [54.96594148572804]
We study the problem of online learning with human feedback in the human-in-the-loop machine translation.
Previous methods require online model updating or additional translation memory networks to achieve high-quality performance.
We propose a novel non-parametric online learning method without changing the model structure.
arXiv Detail & Related papers (2021-09-23T04:26:15Z) - Data Expansion using Back Translation and Paraphrasing for Hate Speech
Detection [1.192436948211501]
We present a new deep learning-based method that fuses a Back Translation method, and a Paraphrasing technique for data augmentation.
We evaluate our proposal on five publicly available datasets; namely, AskFm corpus, Formspring dataset, Warner and Waseem dataset, Olid, and Wikipedia toxic comments dataset.
arXiv Detail & Related papers (2021-05-25T09:52:42Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
We present the first application of the BERTSum model to conversational language.
We generate abstractive summaries of narrated instructional videos across a wide variety of topics.
We envision this integrated as a feature in intelligent virtual assistants, enabling them to summarize both written and spoken instructional content upon request.
arXiv Detail & Related papers (2020-08-21T20:59:34Z) - PALM: Pre-training an Autoencoding&Autoregressive Language Model for
Context-conditioned Generation [92.7366819044397]
Self-supervised pre-training has emerged as a powerful technique for natural language understanding and generation.
This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus.
An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks.
arXiv Detail & Related papers (2020-04-14T06:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.