Robustness in Compressed Neural Networks for Object Detection
- URL: http://arxiv.org/abs/2102.05509v1
- Date: Wed, 10 Feb 2021 15:52:11 GMT
- Title: Robustness in Compressed Neural Networks for Object Detection
- Authors: Sebastian Cygert, Andrzej Czyzewski
- Abstract summary: The sensitivity of compressed models to different distortion types is nuanced.
Some of the corruptions are heavily impacted by the compression methods.
Data augmentation was confirmed to positively affect models' robustness.
- Score: 2.9823962001574182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model compression techniques allow to significantly reduce the computational
cost associated with data processing by deep neural networks with only a minor
decrease in average accuracy. Simultaneously, reducing the model size may have
a large effect on noisy cases or objects belonging to less frequent classes. It
is a crucial problem from the perspective of the models' safety, especially for
object detection in the autonomous driving setting, which is considered in this
work. It was shown in the paper that the sensitivity of compressed models to
different distortion types is nuanced, and some of the corruptions are heavily
impacted by the compression methods (i.e., additive noise), while others (blur
effect) are only slightly affected. A common way to improve the robustness of
models is to use data augmentation, which was confirmed to positively affect
models' robustness, also for highly compressed models. It was further shown
that while data imbalance methods brought only a slight increase in accuracy
for the baseline model (without compression), the impact was more striking at
higher compression rates for the structured pruning. Finally, methods for
handling data imbalance brought a significant improvement of the pruned models'
worst-detected class accuracy.
Related papers
- What Happens When Small Is Made Smaller? Exploring the Impact of Compression on Small Data Pretrained Language Models [2.2871867623460216]
This paper investigates the effectiveness of pruning, knowledge distillation, and quantization on an exclusively low-resourced, small-data language model, AfriBERTa.
Through a battery of experiments, we assess the effects of compression on performance across several metrics beyond accuracy.
arXiv Detail & Related papers (2024-04-06T23:52:53Z) - Adversarial Fine-tuning of Compressed Neural Networks for Joint Improvement of Robustness and Efficiency [3.3490724063380215]
Adrial training has been presented as a mitigation strategy which can result in more robust models.
We explore the effects of two different model compression methods -- structured weight pruning and quantization -- on adversarial robustness.
We show that adversarial fine-tuning of compressed models can achieve robustness performance comparable to adversarially trained models.
arXiv Detail & Related papers (2024-03-14T14:34:25Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
Visual Prompting has emerged as a pivotal method for transfer learning in computer vision.
Model compression detrimentally impacts the performance of visual prompting-based transfer.
However, negative effects on calibration are not present when models are compressed via quantization.
arXiv Detail & Related papers (2023-08-29T01:47:49Z) - RobustMQ: Benchmarking Robustness of Quantized Models [54.15661421492865]
Quantization is an essential technique for deploying deep neural networks (DNNs) on devices with limited resources.
We thoroughly evaluated the robustness of quantized models against various noises (adrial attacks, natural corruptions, and systematic noises) on ImageNet.
Our research contributes to advancing the robust quantization of models and their deployment in real-world scenarios.
arXiv Detail & Related papers (2023-08-04T14:37:12Z) - Bias in Pruned Vision Models: In-Depth Analysis and Countermeasures [93.17009514112702]
Pruning, setting a significant subset of the parameters of a neural network to zero, is one of the most popular methods of model compression.
Despite existing evidence for this phenomenon, the relationship between neural network pruning and induced bias is not well-understood.
arXiv Detail & Related papers (2023-04-25T07:42:06Z) - Deep learning model compression using network sensitivity and gradients [3.52359746858894]
We present model compression algorithms for both non-retraining and retraining conditions.
In the first case, we propose the Bin & Quant algorithm for compression of the deep learning models using the sensitivity of the network parameters.
In the second case, we propose our novel gradient-weighted k-means clustering algorithm (GWK)
arXiv Detail & Related papers (2022-10-11T03:02:40Z) - Language model compression with weighted low-rank factorization [73.61874728240568]
We introduce Fisher information to weigh the importance of parameters affecting the model prediction.
We find that our resulting task accuracy is much closer to the original model's performance.
Our method can directly compress a task-specific model while achieving better performance than other compact model strategies.
arXiv Detail & Related papers (2022-06-30T21:57:07Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
We study two popular model compression techniques including knowledge distillation and pruning.
We show that compressed models are significantly less robust than their PLM counterparts on adversarial test sets.
We develop a regularization strategy for model compression based on sample uncertainty.
arXiv Detail & Related papers (2021-10-16T00:20:04Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Compressed Object Detection [15.893905488328283]
We extend pruning, a compression technique that discards unnecessary model connections, and weight sharing techniques for the task of object detection.
We are able to compress a state-of-the-art object detection model by 30.0% without a loss in performance.
arXiv Detail & Related papers (2021-02-04T21:32:56Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.