Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions
- URL: http://arxiv.org/abs/2012.09662v1
- Date: Thu, 17 Dec 2020 15:19:29 GMT
- Title: Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions
- Authors: Alexander Egiazarov, Fabio Massimo Zennaro, Vasileios Mavroeidis
- Abstract summary: Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Threat detection of weapons and aggressive behavior from live video can be
used for rapid detection and prevention of potentially deadly incidents such as
terrorism, general criminal offences, or even domestic violence. One way for
achieving this is through the use of artificial intelligence and, in
particular, machine learning for image analysis. In this paper we conduct a
comparison between a traditional monolithic end-to-end deep learning model and
a previously proposed model based on an ensemble of simpler neural networks
detecting fire-weapons via semantic segmentation. We evaluated both models from
different points of view, including accuracy, computational and data
complexity, flexibility and reliability. Our results show that a semantic
segmentation model provides considerable amount of flexibility and resilience
in the low data environment compared to classical deep model models, although
its configuration and tuning presents a challenge in achieving the same levels
of accuracy as an end-to-end model.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
We show that embeddings induce a model that fits observations well but simultaneously has incorrect dynamical behaviours.
We propose a simple embedding-free alternative based on parametrising two additive vector-field components.
arXiv Detail & Related papers (2023-05-20T12:41:47Z) - Adversarial Robustness Assessment of NeuroEvolution Approaches [1.237556184089774]
We evaluate the robustness of models found by two NeuroEvolution approaches on the CIFAR-10 image classification task.
Our results show that when the evolved models are attacked with iterative methods, their accuracy usually drops to, or close to, zero.
Some of these techniques can exacerbate the perturbations added to the original inputs, potentially harming robustness.
arXiv Detail & Related papers (2022-07-12T10:40:19Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
We present a time-dynamic approach to model uncertainties of instance segmentation networks.
We apply this approach to the detection of false positives and the estimation of prediction quality.
The proposed method only requires a readily trained neural network and video sequence input.
arXiv Detail & Related papers (2020-12-14T13:39:05Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.