Collision models in open system dynamics: A versatile tool for deeper
insights?
- URL: http://arxiv.org/abs/2102.05735v2
- Date: Mon, 24 May 2021 13:30:58 GMT
- Title: Collision models in open system dynamics: A versatile tool for deeper
insights?
- Authors: Steve Campbell and Bassano Vacchini
- Abstract summary: We focus on one such technique, namely collision models, which have emerged as a remarkably flexible approach.
We discuss their application to understanding non-Markovian dynamics and to studying the thermodynamics of quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and simulating how a quantum system interacts and exchanges
information or energy with its surroundings is a ubiquitous problem, one which
must be carefully addressed in order to establish a coherent framework to
describe the dynamics and thermodynamics of quantum systems. Significant effort
has been invested in developing various methods for tackling this issue and in
this Perspective we focus on one such technique, namely collision models, which
have emerged as a remarkably flexible approach. We discuss their application to
understanding non-Markovian dynamics and to studying the thermodynamics of
quantum systems, two areas in which collision models have proven to be
particularly insightful. Their simple structure endows them with extremely
broad applicability which has spurred their recent experimental demonstrations.
By focusing on these areas, our aim is to provide a succinct entry point to
this remarkable framework.
Related papers
- Large-scale stochastic simulation of open quantum systems [2.2627671295262215]
We introduce the tensor jump method (TJM), a scalable, embarrassingly parallel algorithm for simulating large-scale open quantum systems.
This work represents a significant step forward in the simulation of large-scale open quantum systems.
arXiv Detail & Related papers (2025-01-29T19:00:00Z) - Effective Modeling of Open Quantum Systems by Low-rank Discretization of Structured Environments [0.0]
We pioneer a new strategy to create discrete low-rank models of the system-environment interaction.
We demonstrate the effectiveness of our methodology by combining it with tensor-network methodologies.
The new modeling framework sets the basis for a leap in the analysis of open quantum systems.
arXiv Detail & Related papers (2024-07-26T17:27:09Z) - A Hierarchical Approach to Quantum Many-Body Systems in Structured Environments [0.0]
Cavity quantum materials combine the rich many-body physics of condensed matter systems with strong coupling to the surrounding electromagnetic field.
We show that strong optical coupling modifies the dynamic of the many-body system.
Our work establishes an accessible, yet rigorous, route between condensed matter and quantum optics, fostering the growth of a new domain at their interface.
arXiv Detail & Related papers (2024-05-08T14:43:20Z) - Quantum Mechanics of Open Systems in Non-Inertial Motion [9.632520418947305]
This paper presents a comprehensive framework for analyzing the quantum mechanics of open systems undergoing noninertial motion.
We demonstrate that our approach offers a natural understanding of the intricate dynamics among non-inertial effects, decoherence, dissipation, and system-bath entanglement.
arXiv Detail & Related papers (2024-04-10T14:45:04Z) - Unified View of Grokking, Double Descent and Emergent Abilities: A
Perspective from Circuits Competition [83.13280812128411]
Recent studies have uncovered intriguing phenomena in deep learning, such as grokking, double descent, and emergent abilities in large language models.
We present a comprehensive framework that provides a unified view of these three phenomena, focusing on the competition between memorization and generalization circuits.
arXiv Detail & Related papers (2024-02-23T08:14:36Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - High-dimensional monitoring and the emergence of realism via multiple observers [41.94295877935867]
Correlation is the basic mechanism of every measurement model.
We introduce a model that interpolates between weak and strong non-selective measurements for qudits.
arXiv Detail & Related papers (2023-05-13T13:42:19Z) - A Schmidt decomposition approach to quantum thermodynamics [0.0]
We propose a novel approach to describe the thermodynamics of arbitrary bipartite autonomous quantum systems.
This formalism provides a simple, exact and symmetrical framework for expressing the energetics between interacting systems.
arXiv Detail & Related papers (2022-05-13T22:38:56Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
We propose a data-driven approach to the analysis of the non-Markovian dynamics of open quantum systems.
Our method allows, on the one hand, capturing the effective dimension of the environment and the spectrum of the joint system-environment quantum dynamics.
We demonstrate the performance of the proposed approach with various models of open quantum systems.
arXiv Detail & Related papers (2021-03-26T14:27:33Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.