論文の概要: Artificial intelligence in communication impacts language and social
relationships
- arxiv url: http://arxiv.org/abs/2102.05756v1
- Date: Wed, 10 Feb 2021 22:05:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 14:08:45.793568
- Title: Artificial intelligence in communication impacts language and social
relationships
- Title(参考訳): コミュニケーションにおける人工知能が言語と社会的関係に与える影響
- Authors: Jess Hohenstein and Dominic DiFranzo and Rene F. Kizilcec and Zhila
Aghajari and Hannah Mieczkowski and Karen Levy and Mor Naaman and Jeff
Hancock and Malte Jung
- Abstract要約: 我々は、最も普及しているAIアプリケーションのうちの1つ、アルゴリズム的な応答提案(smart response)の社会的結果を研究する。
提案手法は, コミュニケーション効率の向上, 肯定的な感情言語の利用, コミュニケーションパートナーによる肯定的な評価を行う。
しかし、AIの否定的含意に関する一般的な仮定と一致し、アルゴリズム的応答を疑う場合、人々はより否定的に評価される。
- 参考スコア(独自算出の注目度): 11.212791488179757
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence (AI) is now widely used to facilitate social
interaction, but its impact on social relationships and communication is not
well understood. We study the social consequences of one of the most pervasive
AI applications: algorithmic response suggestions ("smart replies"). Two
randomized experiments (n = 1036) provide evidence that a commercially-deployed
AI changes how people interact with and perceive one another in pro-social and
anti-social ways. We find that using algorithmic responses increases
communication efficiency, use of positive emotional language, and positive
evaluations by communication partners. However, consistent with common
assumptions about the negative implications of AI, people are evaluated more
negatively if they are suspected to be using algorithmic responses. Thus, even
though AI can increase communication efficiency and improve interpersonal
perceptions, it risks changing users' language production and continues to be
viewed negatively.
- Abstract(参考訳): 人工知能(ai)は現在、社会的相互作用を促進するために広く使われているが、その社会的関係やコミュニケーションへの影響はよく分かっていない。
私たちは、最も普及しているAIアプリケーションの1つであるアルゴリズムによる応答提案("smart replies")の社会的影響を研究します。
2つのランダム化実験(n = 1036)は、商業的に展開されたAIが、人々が社会的および反社会的方法で相互に相互作用し、知覚する方法を変えるという証拠を提供する。
アルゴリズム応答を用いることで,コミュニケーション効率,ポジティブ感情言語の利用,コミュニケーションパートナーによる肯定評価が向上することがわかった。
しかし、AIの否定的含意に関する一般的な仮定と一致し、アルゴリズム的応答を疑う場合、人々はより否定的に評価される。
このように、AIはコミュニケーション効率を向上し、対人認識を改善することができるが、ユーザの言語生産の変化を危険にさらし、ネガティブな見方を継続する。
関連論文リスト
- The Dark Side of AI Companionship: A Taxonomy of Harmful Algorithmic Behaviors in Human-AI Relationships [17.5741039825938]
我々は,AIコンパニオンであるReplikaが示す有害な行動の6つのカテゴリを特定した。
AIは、加害者、侮辱者、ファシリテーター、イネーブラーの4つの異なる役割を通じて、これらの害に貢献する。
論文 参考訳(メタデータ) (2024-10-26T09:18:17Z) - Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - What should I say? -- Interacting with AI and Natural Language
Interfaces [0.0]
HAI(Human-AI Interaction)サブフィールドは、HCI(Human-Computer Interaction)フィールドから生まれ、この概念を検証することを目的としている。
以前の研究では、マインド表現の理論は成功と努力の無いコミュニケーションに不可欠であると示唆されていたが、AIと対話する際にマインド表現の理論が確立されるという点に関しては、ほとんど理解されていない。
論文 参考訳(メタデータ) (2024-01-12T05:10:23Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Public Perception of Generative AI on Twitter: An Empirical Study Based
on Occupation and Usage [7.18819534653348]
本稿は,2019年1月から2023年3月までのTwitter上での3Mポストを用いた生成AIに対するユーザの認識について検討する。
私たちは、IT関連だけでなく、様々な職種にまたがる人々が、生成AIに強い関心を示していることに気付きました。
ChatGPTのリリース後、AI全般に対する人々の関心は劇的に高まった。
論文 参考訳(メタデータ) (2023-05-16T15:30:12Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI agents for facilitating social interactions and wellbeing [0.0]
ソーシャルインタラクションにおけるAI強化エージェントの役割について概説する。
我々は、我々の社会における幸福を促進するために、幸福なAIとリレーショナルアプローチの機会と課題について議論する。
論文 参考訳(メタデータ) (2022-02-26T04:05:23Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - SocialAI 0.1: Towards a Benchmark to Stimulate Research on
Socio-Cognitive Abilities in Deep Reinforcement Learning Agents [23.719833581321033]
人間との社会的相互作用に参加できる体型自律エージェントを構築することは、AIの主要な課題の1つです。
現在のアプローチは、非常に単純で非多様な社会状況におけるコミュニケーションツールとして言語に焦点を当てています。
人間レベルのAIを目指すためには、より広範な社会的スキルが必要であると私たちは主張します。
論文 参考訳(メタデータ) (2021-04-27T14:16:29Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。