論文の概要: Online Deterministic Annealing for Classification and Clustering
- arxiv url: http://arxiv.org/abs/2102.05836v1
- Date: Thu, 11 Feb 2021 04:04:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 20:09:40.078106
- Title: Online Deterministic Annealing for Classification and Clustering
- Title(参考訳): 分類とクラスタリングのためのオンライン決定論的アニーリング
- Authors: Christos Mavridis, John Baras
- Abstract要約: 本稿では,クラスタリングと分類のためのオンラインプロトタイプベースの学習アルゴリズムを提案する。
本稿では,提案アルゴリズムが競合学習ニューラルネットワークを構成することを示し,その学習規則をオンライン近似アルゴリズムとして定式化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an online prototype-based learning algorithm for clustering and
classification, based on the principles of deterministic annealing. We show
that the proposed algorithm constitutes a competitive-learning neural network,
the learning rule of which is formulated as an online stochastic approximation
algorithm. The annealing nature of the algorithm prevents poor local minima,
offers robustness with respect to the initial conditions, and provides a means
to progressively increase the complexity of the learning model as needed,
through an intuitive bifurcation phenomenon. As a result, the proposed approach
is interpretable, requires minimal hyper-parameter tuning, and offers online
control over the complexity-accuracy trade-off. Finally, Bregman divergences
are used as a family of dissimilarity measures that are shown to play an
important role in both the performance of the algorithm, and its computational
complexity. We illustrate the properties and evaluate the performance of the
proposed learning algorithm in artificial and real datasets.
- Abstract(参考訳): 決定論的アニーリングの原理に基づいたクラスタリングと分類のためのオンラインプロトタイプベースの学習アルゴリズムを紹介します。
本稿では,提案アルゴリズムが競合学習ニューラルネットワークを構成することを示し,学習規則をオンライン確率近似アルゴリズムとして定式化する。
アルゴリズムのアニーリング性は局所的な極小さを防ぎ、初期条件に対する堅牢性を提供し、直感的な分岐現象を通じて学習モデルの複雑さを段階的に増加させる手段を提供する。
その結果、提案手法は解釈可能であり、最小限のハイパーパラメータチューニングを必要とし、複雑性と精度のトレードオフに対するオンライン制御を提供する。
最後に、Bregmanの発散は、アルゴリズムの性能と計算複雑性の両方において重要な役割を果たすことを示す相似性尺度の族として用いられる。
本稿では,人工および実データ集合における学習アルゴリズムの特性と性能評価について述べる。
関連論文リスト
- Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Annealing Optimization for Progressive Learning with Stochastic
Approximation [0.0]
計算資源が限られているアプリケーションのニーズを満たすために設計された学習モデルを導入する。
我々は,オンラインな勾配近似アルゴリズムとして定式化されたオンラインプロトタイプベースの学習アルゴリズムを開発した。
学習モデルは、教師なし、教師なし、強化学習に使用される、解釈可能で、徐々に成長する競争的ニューラルネットワークモデルと見なすことができる。
論文 参考訳(メタデータ) (2022-09-06T21:31:01Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Adaptive Resonance Theory-based Topological Clustering with a Divisive
Hierarchical Structure Capable of Continual Learning [8.581682204722894]
本稿では、データポイントの分布から類似度閾値を自動的に推定する機構を備えたARTベースのトポロジカルクラスタリングアルゴリズムを提案する。
情報抽出性能を向上させるために,連続学習が可能な分割階層クラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-26T02:34:52Z) - Online Attentive Kernel-Based Temporal Difference Learning [13.94346725929798]
オンライン強化学習(RL)はその高速学習能力とデータ効率の向上により注目されている。
オンラインRLは、しばしば複雑な値関数近似(VFA)と破滅的な干渉に悩まされる。
2時間スケール最適化を用いたオンラインカーネルに基づく時間差分法(OAKTD)を提案する。
論文 参考訳(メタデータ) (2022-01-22T14:47:10Z) - Learning to Actively Learn: A Robust Approach [22.75298609290053]
本研究では,アクティブラーニングや純粋探索型マルチアームバンディットといった適応データ収集タスクのアルゴリズム設計手法を提案する。
我々の適応アルゴリズムは、情報理論の下界から導かれる問題の同値クラスに対する逆学習によって学習される。
我々は,訓練手順の安定性と有効性を正当化するための合成実験を行い,実データから導出される課題について評価する。
論文 参考訳(メタデータ) (2020-10-29T06:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。