Efficient simulation of ultrafast quantum nonlinear optics with matrix
product states
- URL: http://arxiv.org/abs/2102.05902v1
- Date: Thu, 11 Feb 2021 09:15:24 GMT
- Title: Efficient simulation of ultrafast quantum nonlinear optics with matrix
product states
- Authors: Ryotatsu Yanagimoto, Edwin Ng, Logan G. Wright, Tatsuhiro Onodera,
Hideo Mabuchi
- Abstract summary: We develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes.
We observe the development of non-classical Wigner-function negativity in the solitonic mode and quantum corrections to the semiclassical dynamics of the pulse.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultra-short pulses propagating in nonlinear nanophotonic waveguides can
simultaneously leverage both temporal and spatial field confinement, promising
a route towards single-photon nonlinearities in an all-photonic platform. In
this multimode quantum regime, however, faithful numerical simulations of pulse
dynamics na\"ively require a representation of the state in an exponentially
large Hilbert space. Here, we employ a time-domain, matrix product state (MPS)
representation to enable efficient simulations by exploiting the entanglement
structure of the system. In order to extract physical insight from these
simulations, we develop an algorithm to unravel the MPS quantum state into
constituent temporal supermodes, enabling, e.g., access to the phase-space
portraits of arbitrary pulse waveforms. As a demonstration, we perform exact
numerical simulations of a Kerr soliton in the quantum regime. We observe the
development of non-classical Wigner-function negativity in the solitonic mode
as well as quantum corrections to the semiclassical dynamics of the pulse. A
similar analysis of $\chi^{(2)}$ simultons reveals a unique entanglement
structure between the fundamental and second harmonic. Our approach is also
readily compatible with quantum trajectory theory, allowing full quantum
treatment of propagation loss and decoherence. We expect this work to establish
the MPS technique as part of a unified engineering framework for the emerging
field of broadband quantum photonics.
Related papers
- Simulating Non-Markovian Dynamics in Multidimensional Electronic Spectroscopy via Quantum Algorithm [0.0]
We present a general approach for the simulation of the optical response of multi-chromophore systems in a structured environment.
A key step of the procedure is the pseudomode embedding of the system-environment problem resulting in a finite set of quantum states evolving.
This formulation is then solved by a collision model integrated into a quantum algorithm designed to simulate linear and nonlinear response functions.
arXiv Detail & Related papers (2024-09-09T12:13:41Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Quantum noise dynamics in nonlinear pulse propagation [0.0]
We numerically study quantum noise dynamics and multimode entanglement in several ultrafast systems.
We show that our model exhibits nonlinear dynamics in both the mean field and the quantum correlations.
arXiv Detail & Related papers (2023-07-11T17:50:33Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Classical-to-quantum transition in multimode nonlinear systems with
strong photon-photon coupling [12.067269037074292]
We investigate the classical-to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method.
This work presents a universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-11-18T07:26:57Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.