論文の概要: Sequential Sentence Classification in Research Papers using Cross-Domain
Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2102.06008v1
- Date: Thu, 11 Feb 2021 13:54:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-13 02:01:41.844543
- Title: Sequential Sentence Classification in Research Papers using Cross-Domain
Multi-Task Learning
- Title(参考訳): クロスドメインマルチタスク学習を用いた研究論文の逐次文分類
- Authors: Arthur Brack and Anett Hoppe and Pascal Buscherm\"ohle and Ralph
Ewerth
- Abstract要約: 本研究では,一様深層学習アーキテクチャとマルチタスク学習を提案する。
当社のアプローチは,3つのベンチマークデータセット上でのテクニックの状況よりも優れています。
- 参考スコア(独自算出の注目度): 4.2443814047515716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of sequential sentence classification enables the semantic
structuring of research papers. This can enhance academic search engines to
support researchers in finding and exploring research literature more
effectively. However, previous work has not investigated the potential of
transfer learning with datasets from different scientific domains for this task
yet. We propose a uniform deep learning architecture and multi-task learning to
improve sequential sentence classification in scientific texts across domains
by exploiting training data from multiple domains. Our contributions can be
summarised as follows: (1) We tailor two common transfer learning methods,
sequential transfer learning and multi-task learning, and evaluate their
performance for sequential sentence classification; (2) The presented
multi-task model is able to recognise semantically related classes from
different datasets and thus supports manual comparison and assessment of
different annotation schemes; (3) The unified approach is capable of handling
datasets that contain either only abstracts or full papers without further
feature engineering. We demonstrate that models, which are trained on datasets
from different scientific domains, benefit from one another when using the
proposed multi-task learning architecture. Our approach outperforms the state
of the art on three benchmark datasets.
- Abstract(参考訳): 逐次文分類のタスクは、研究論文のセマンティック構造を可能にする。
これにより学術検索エンジンが強化され、研究者が研究文献の検索と探索をより効果的に行えるようになる。
しかし、以前の研究では、このタスクのために異なる科学領域のデータセットで学習を転送する可能性をまだ検討していません。
本稿では,複数の領域の学習データを活用し,各領域にまたがる科学文章の逐次文分類を改善するための,一様ディープラーニングアーキテクチャとマルチタスク学習を提案する。
Our contributions can be summarised as follows: (1) We tailor two common transfer learning methods, sequential transfer learning and multi-task learning, and evaluate their performance for sequential sentence classification; (2) The presented multi-task model is able to recognise semantically related classes from different datasets and thus supports manual comparison and assessment of different annotation schemes; (3) The unified approach is capable of handling datasets that contain either only abstracts or full papers without further feature engineering.
提案するマルチタスク学習アーキテクチャを用いて,異なる科学的領域のデータセット上で学習されるモデルが相互に利益をもたらすことを実証する。
私たちのアプローチは、3つのベンチマークデータセットの最先端を上回ります。
関連論文リスト
- M3: A Multi-Task Mixed-Objective Learning Framework for Open-Domain Multi-Hop Dense Sentence Retrieval [12.277521531556852]
M3は,高密度テキスト表現学習のためのマルチタスク混合オブジェクトに基づく,新しいマルチホップ高密度文検索システムである。
提案手法は,大規模オープンドメイン事実検証ベンチマークデータセットであるFEVER上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-21T01:52:07Z) - UniDoc: A Universal Large Multimodal Model for Simultaneous Text
Detection, Recognition, Spotting and Understanding [93.92313947913831]
テキスト検出と認識機能を備えた新しいマルチモーダルモデルUniDocを紹介する。
我々の知る限りでは、これはテキストの検出、認識、スポッティング、理解を同時に行うことができる最初の大規模マルチモーダルモデルである。
論文 参考訳(メタデータ) (2023-08-19T17:32:34Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
事前学習言語モデル(LM)は、科学文献理解タスクにおいて有効であることを示す。
文献理解タスク間の共通知識共有を容易にするために,マルチタスクのコントラスト学習フレームワークであるSciMultを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:47:22Z) - FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue [70.65782786401257]
本研究は、オープンドメイン対話における少数サンプルタスク転送のベンチマークであるFETAを導入することにより、対話型タスク転送について検討する。
FETAには10タスクと7タスクがアノテートされた2つの基礎的な会話が含まれており、データセット内タスク転送の研究を可能にする。
3つの人気のある言語モデルと3つの学習アルゴリズムを用いて、132のソースターゲットタスクペア間の転送可能性を分析する。
論文 参考訳(メタデータ) (2022-05-12T17:59:00Z) - An Approach for Combining Multimodal Fusion and Neural Architecture
Search Applied to Knowledge Tracing [6.540879944736641]
本稿では,マルチモーダル融合とニューラルアーキテクチャ探索を組み合わせた逐次モデルに基づく最適化手法を提案する。
得られたモデルが優れた性能を達成できることを示す2つの公開実データに対して,本手法の評価を行った。
論文 参考訳(メタデータ) (2021-11-08T13:43:46Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
少ないショット学習は、ラベル付きデータしか持たない新しいタスクに、以前のタスクから学んだ知識を適応させることを目的としている。
少数ショット学習に関する研究文献は、大きな多様性を示し、異なるアルゴリズムは、しばしば異なる少数ショット学習シナリオで優れている。
本稿では,メタナビゲータ(Meta Navigator)について紹介する。
論文 参考訳(メタデータ) (2021-09-13T07:20:01Z) - Multimodal Clustering Networks for Self-supervised Learning from
Unlabeled Videos [69.61522804742427]
本稿では,共通のマルチモーダル埋め込み空間を学習する自己監督型トレーニングフレームワークを提案する。
インスタンスレベルのコントラスト学習の概念をマルチモーダルクラスタリングステップで拡張し,モダリティ間の意味的類似性を捉える。
結果として得られる埋め込みスペースは、見えないデータセットや異なるドメインからでも、すべてのモダリティにわたるサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2021-04-26T15:55:01Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Vision-Based Layout Detection from Scientific Literature using Recurrent
Convolutional Neural Networks [12.221478896815292]
本稿では,オブジェクト認識と分類のための畳み込みニューラルネットワークを科学的文献レイアウト検出(SLLD)に適用するためのアプローチを提案する。
SLLDは、いくつかの情報抽出問題の共有サブタスクである。
その結果,事前学習ベースネットワークの微調整による改善が得られた。
論文 参考訳(メタデータ) (2020-10-18T23:50:28Z) - Two Huge Title and Keyword Generation Corpora of Research Articles [0.0]
本稿では,テキスト要約(OAGSX)とキーワード生成(OAGKX)の2つの巨大なデータセットを紹介する。
データは、研究プロファイルと出版物のネットワークであるOpen Academic Graphから取得された。
より具体的な分野から研究論文のサブセットを導出するために、この2つの集合にトピックモデリングを適用したい。
論文 参考訳(メタデータ) (2020-02-11T21:17:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。