Contrastive Unsupervised Learning for Speech Emotion Recognition
- URL: http://arxiv.org/abs/2102.06357v1
- Date: Fri, 12 Feb 2021 06:06:02 GMT
- Title: Contrastive Unsupervised Learning for Speech Emotion Recognition
- Authors: Mao Li, Bo Yang, Joshua Levy, Andreas Stolcke, Viktor Rozgic, Spyros
Matsoukas, Constantinos Papayiannis, Daniel Bone, Chao Wang
- Abstract summary: Speech emotion recognition (SER) is a key technology to enable more natural human-machine communication.
We show that the contrastive predictive coding (CPC) method can learn salient representations from unlabeled datasets.
- Score: 22.004507213531102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech emotion recognition (SER) is a key technology to enable more natural
human-machine communication. However, SER has long suffered from a lack of
public large-scale labeled datasets. To circumvent this problem, we investigate
how unsupervised representation learning on unlabeled datasets can benefit SER.
We show that the contrastive predictive coding (CPC) method can learn salient
representations from unlabeled datasets, which improves emotion recognition
performance. In our experiments, this method achieved state-of-the-art
concordance correlation coefficient (CCC) performance for all emotion
primitives (activation, valence, and dominance) on IEMOCAP. Additionally, on
the MSP- Podcast dataset, our method obtained considerable performance
improvements compared to baselines.
Related papers
- Self-supervised Gait-based Emotion Representation Learning from Selective Strongly Augmented Skeleton Sequences [4.740624855896404]
We propose a contrastive learning framework utilizing selective strong augmentation for self-supervised gait-based emotion representation.
Our approach is validated on the Emotion-Gait (E-Gait) and Emilya datasets and outperforms the state-of-the-art methods under different evaluation protocols.
arXiv Detail & Related papers (2024-05-08T09:13:10Z) - Deep Imbalanced Learning for Multimodal Emotion Recognition in
Conversations [15.705757672984662]
Multimodal Emotion Recognition in Conversations (MERC) is a significant development direction for machine intelligence.
Many data in MERC naturally exhibit an imbalanced distribution of emotion categories, and researchers ignore the negative impact of imbalanced data on emotion recognition.
We propose the Class Boundary Enhanced Representation Learning (CBERL) model to address the imbalanced distribution of emotion categories in raw data.
We have conducted extensive experiments on the IEMOCAP and MELD benchmark datasets, and the results show that CBERL has achieved a certain performance improvement in the effectiveness of emotion recognition.
arXiv Detail & Related papers (2023-12-11T12:35:17Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Multimodal Emotion Recognition with Modality-Pairwise Unsupervised
Contrastive Loss [80.79641247882012]
We focus on unsupervised feature learning for Multimodal Emotion Recognition (MER)
We consider discrete emotions, and as modalities text, audio and vision are used.
Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature.
arXiv Detail & Related papers (2022-07-23T10:11:24Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Analyzing the Influence of Dataset Composition for Emotion Recognition [0.0]
We analyze the influence data collection methodology has on two multimodal emotion recognition datasets.
Experiments with the full IEMOCAP dataset indicate that the composition negatively influences generalization performance when compared to the OMG-Emotion Behavior dataset.
arXiv Detail & Related papers (2021-03-05T14:20:59Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
This paper presents an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations.
We show that our approach achieves higher efficiency in visual representations and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
arXiv Detail & Related papers (2020-11-19T16:26:25Z) - Recognizing More Emotions with Less Data Using Self-supervised Transfer
Learning [0.0]
We propose a novel transfer learning method for speech emotion recognition.
With as low as 125 examples per emotion class, we were able to reach a higher accuracy than a strong baseline trained on 8 times more data.
arXiv Detail & Related papers (2020-11-11T06:18:31Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.