Towards Unbiased Visual Emotion Recognition via Causal Intervention
- URL: http://arxiv.org/abs/2107.12096v1
- Date: Mon, 26 Jul 2021 10:40:59 GMT
- Title: Towards Unbiased Visual Emotion Recognition via Causal Intervention
- Authors: Yuedong Chen, Xu Yang, Tat-Jen Cham and Jianfei Cai
- Abstract summary: We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
- Score: 63.74095927462
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although much progress has been made in visual emotion recognition,
researchers have realized that modern deep networks tend to exploit dataset
characteristics to learn spurious statistical associations between the input
and the target. Such dataset characteristics are usually treated as dataset
bias, which damages the robustness and generalization performance of these
recognition systems. In this work, we scrutinize this problem from the
perspective of causal inference, where such dataset characteristic is termed as
a confounder which misleads the system to learn the spurious correlation. To
alleviate the negative effects brought by the dataset bias, we propose a novel
Interventional Emotion Recognition Network (IERN) to achieve the backdoor
adjustment, which is one fundamental deconfounding technique in causal
inference. A series of designed tests validate the effectiveness of IERN, and
experiments on three emotion benchmarks demonstrate that IERN outperforms other
state-of-the-art approaches.
Related papers
- Towards Context-Aware Emotion Recognition Debiasing from a Causal Demystification Perspective via De-confounded Training [14.450673163785094]
Context-Aware Emotion Recognition (CAER) provides valuable semantic cues for recognizing the emotions of target persons.
Current approaches invariably focus on designing sophisticated structures to extract perceptually critical representations from contexts.
We present a Contextual Causal Intervention Module (CCIM) to de-confound the confounder.
arXiv Detail & Related papers (2024-07-06T05:29:02Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset.
Deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance.
This study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability.
arXiv Detail & Related papers (2023-07-27T17:22:41Z) - Automated Deception Detection from Videos: Using End-to-End Learning
Based High-Level Features and Classification Approaches [0.0]
We propose a multimodal approach combining deep learning and discriminative models for deception detection.
We employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions.
Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors.
arXiv Detail & Related papers (2023-07-13T08:45:15Z) - Context De-confounded Emotion Recognition [12.037240778629346]
Context-Aware Emotion Recognition (CAER) aims to perceive the emotional states of the target person with contextual information.
A long-overlooked issue is that a context bias in existing datasets leads to a significantly unbalanced distribution of emotional states.
This paper provides a causality-based perspective to disentangle the models from the impact of such bias, and formulate the causalities among variables in the CAER task.
arXiv Detail & Related papers (2023-03-21T15:12:20Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
We investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network.
Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation.
We introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies.
arXiv Detail & Related papers (2020-08-01T00:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.