Improving Object Detection in Art Images Using Only Style Transfer
- URL: http://arxiv.org/abs/2102.06529v1
- Date: Fri, 12 Feb 2021 13:48:46 GMT
- Title: Improving Object Detection in Art Images Using Only Style Transfer
- Authors: David Kadish, Sebastian Risi, Anders Sundnes L{\o}vlie
- Abstract summary: We propose and evaluate a process for training neural networks to localize objects - specifically people - in art images.
We generate a large dataset for training and validation by modifying the images in the COCO dataset using AdaIn style transfer.
The result is a significant improvement on the state of the art and a new way forward for creating datasets to train neural networks to process art images.
- Score: 5.156484100374058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in object detection using deep learning neural
networks, these neural networks still struggle to identify objects in art
images such as paintings and drawings. This challenge is known as the cross
depiction problem and it stems in part from the tendency of neural networks to
prioritize identification of an object's texture over its shape. In this paper
we propose and evaluate a process for training neural networks to localize
objects - specifically people - in art images. We generate a large dataset for
training and validation by modifying the images in the COCO dataset using AdaIn
style transfer. This dataset is used to fine-tune a Faster R-CNN object
detection network, which is then tested on the existing People-Art testing
dataset. The result is a significant improvement on the state of the art and a
new way forward for creating datasets to train neural networks to process art
images.
Related papers
- Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
The proposed method, emotion-centered generative replay (ECgr), tackles this challenge by integrating synthetic images from generative adversarial networks.
ECgr incorporates a quality assurance algorithm to ensure the fidelity of generated images.
The experimental results on four diverse facial expression datasets demonstrate that incorporating images generated by our pseudo-rehearsal method enhances training on the targeted dataset and the source dataset.
arXiv Detail & Related papers (2024-04-18T15:28:34Z) - UAVs and Neural Networks for search and rescue missions [0.0]
We present a method for detecting objects of interest, including cars, humans, and fire, in aerial images captured by unmanned aerial vehicles (UAVs)
To achieve this, we use artificial neural networks and create a dataset for supervised learning.
arXiv Detail & Related papers (2023-10-09T08:27:35Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks.
In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples.
arXiv Detail & Related papers (2022-09-02T08:06:58Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
We propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data.
The proposed NeurMAP is an approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets.
arXiv Detail & Related papers (2022-04-26T08:09:47Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
The goal of this work is to efficiently identify visually similar patterns from a pair of images.
We generate synthetic training pairs by selecting object segments in an image and copy-pasting them into another image.
We show our approach provides clear improvements for artwork details retrieval on the Brueghel dataset.
arXiv Detail & Related papers (2021-10-29T16:51:16Z) - An analysis of the transfer learning of convolutional neural networks
for artistic images [1.9336815376402716]
Transfer learning from huge natural image datasets has become de facto the core of art analysis applications.
In this paper, we first use techniques for visualizing the network internal representations in order to provide clues to the understanding of what the network has learned on artistic images.
We provide a quantitative analysis of the changes introduced by the learning process thanks to metrics in both the feature and parameter spaces, as well as metrics computed on the set of maximal activation images.
arXiv Detail & Related papers (2020-11-05T09:45:32Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Reinforcement Learning for Improving Object Detection [22.06211725256875]
We introduce an algorithm called ObjectRL to choose the amount of a particular pre-processing to be applied to improve the object detection performances of pre-trained networks.
The main motivation for ObjectRL is that an image which looks good to a human eye may not necessarily be the optimal one for a pre-trained object detector to detect objects.
arXiv Detail & Related papers (2020-08-18T16:20:04Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - Learning Local Complex Features using Randomized Neural Networks for
Texture Analysis [0.1474723404975345]
We present a new approach that combines a learning technique and the Complex Network (CN) theory for texture analysis.
This method takes advantage of the representation capacity of CN to model a texture image as a directed network.
This neural network has a single hidden layer and uses a fast learning algorithm, which is able to learn local CN patterns for texture characterization.
arXiv Detail & Related papers (2020-07-10T23:18:01Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.