Reinforcement Learning for Improving Object Detection
- URL: http://arxiv.org/abs/2008.08005v1
- Date: Tue, 18 Aug 2020 16:20:04 GMT
- Title: Reinforcement Learning for Improving Object Detection
- Authors: Siddharth Nayak and Balaraman Ravindran
- Abstract summary: We introduce an algorithm called ObjectRL to choose the amount of a particular pre-processing to be applied to improve the object detection performances of pre-trained networks.
The main motivation for ObjectRL is that an image which looks good to a human eye may not necessarily be the optimal one for a pre-trained object detector to detect objects.
- Score: 22.06211725256875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of a trained object detection neural network depends a lot on
the image quality. Generally, images are pre-processed before feeding them into
the neural network and domain knowledge about the image dataset is used to
choose the pre-processing techniques. In this paper, we introduce an algorithm
called ObjectRL to choose the amount of a particular pre-processing to be
applied to improve the object detection performances of pre-trained networks.
The main motivation for ObjectRL is that an image which looks good to a human
eye may not necessarily be the optimal one for a pre-trained object detector to
detect objects.
Related papers
- Label-Free Synthetic Pretraining of Object Detectors [67.17371526567325]
We propose a new approach, Synthetic optimized layout with Instance Detection (SOLID), to pretrain object detectors with synthetic images.
Our "SOLID" approach consists of two main components: (1) generating synthetic images using a collection of unlabelled 3D models with optimized scene arrangement; (2) pretraining an object detector on "instance detection" task.
Our approach does not need any semantic labels for pretraining and allows the use of arbitrary, diverse 3D models.
arXiv Detail & Related papers (2022-08-08T16:55:17Z) - Neural Architecture Adaptation for Object Detection by Searching Channel
Dimensions and Mapping Pre-trained Parameters [17.090405682103167]
Most object detection frameworks use backbone architectures originally designed for image classification, conventionally with pre-trained parameters on ImageNet.
Recent neural architecture search (NAS) research has demonstrated that automatically designing a backbone specifically for object detection helps improve the overall accuracy.
We introduce a neural architecture adaptation method that can optimize the given backbone for detection purposes, while still allowing the use of pre-trained parameters.
arXiv Detail & Related papers (2022-06-17T02:01:56Z) - Simple Open-Vocabulary Object Detection with Vision Transformers [51.57562920090721]
We propose a strong recipe for transferring image-text models to open-vocabulary object detection.
We use a standard Vision Transformer architecture with minimal modifications, contrastive image-text pre-training, and end-to-end detection fine-tuning.
We provide the adaptation strategies and regularizations needed to attain very strong performance on zero-shot text-conditioned and one-shot image-conditioned object detection.
arXiv Detail & Related papers (2022-05-12T17:20:36Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - Semantic-Aware Generation for Self-Supervised Visual Representation
Learning [116.5814634936371]
We advocate for Semantic-aware Generation (SaGe) to facilitate richer semantics rather than details to be preserved in the generated image.
SaGe complements the target network with view-specific features and thus alleviates the semantic degradation brought by intensive data augmentations.
We execute SaGe on ImageNet-1K and evaluate the pre-trained models on five downstream tasks including nearest neighbor test, linear classification, and fine-scaled image recognition.
arXiv Detail & Related papers (2021-11-25T16:46:13Z) - Pix2seq: A Language Modeling Framework for Object Detection [12.788663431798588]
Pix2Seq is a simple and generic framework for object detection.
We train a neural net to perceive the image and generate the desired sequence.
Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out.
arXiv Detail & Related papers (2021-09-22T17:26:36Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
We take advantage of object-centric images to improve object detection in scene-centric images.
We present a simple yet surprisingly effective framework to do so.
Our approach can improve the object detection (and instance segmentation) accuracy of rare objects by 50% (and 33%) relatively.
arXiv Detail & Related papers (2021-02-17T17:27:21Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
We propose a new self-supervised pretext task, called instance localization.
We show that integration of bounding boxes into pretraining promotes better task alignment and architecture alignment for transfer learning.
Experimental results demonstrate that our approach yields state-of-the-art transfer learning results for object detection.
arXiv Detail & Related papers (2021-02-16T17:58:57Z) - Improving Object Detection in Art Images Using Only Style Transfer [5.156484100374058]
We propose and evaluate a process for training neural networks to localize objects - specifically people - in art images.
We generate a large dataset for training and validation by modifying the images in the COCO dataset using AdaIn style transfer.
The result is a significant improvement on the state of the art and a new way forward for creating datasets to train neural networks to process art images.
arXiv Detail & Related papers (2021-02-12T13:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.