End-to-end Audio-visual Speech Recognition with Conformers
- URL: http://arxiv.org/abs/2102.06657v1
- Date: Fri, 12 Feb 2021 18:00:08 GMT
- Title: End-to-end Audio-visual Speech Recognition with Conformers
- Authors: Pingchuan Ma, Stavros Petridis, Maja Pantic
- Abstract summary: We present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer (Conformer)
In particular, the audio and visual encoders learn to extract features directly from raw pixels and audio waveforms.
We show that our proposed models raise the state-of-the-art performance by a large margin in audio-only, visual-only, and audio-visual experiments.
- Score: 65.30276363777514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a hybrid CTC/Attention model based on a ResNet-18
and Convolution-augmented transformer (Conformer), that can be trained in an
end-to-end manner. In particular, the audio and visual encoders learn to
extract features directly from raw pixels and audio waveforms, respectively,
which are then fed to conformers and then fusion takes place via a Multi-Layer
Perceptron (MLP). The model learns to recognise characters using a combination
of CTC and an attention mechanism. We show that end-to-end training, instead of
using pre-computed visual features which is common in the literature, the use
of a conformer, instead of a recurrent network, and the use of a
transformer-based language model, significantly improve the performance of our
model. We present results on the largest publicly available datasets for
sentence-level speech recognition, Lip Reading Sentences 2 (LRS2) and Lip
Reading Sentences 3 (LRS3), respectively. The results show that our proposed
models raise the state-of-the-art performance by a large margin in audio-only,
visual-only, and audio-visual experiments.
Related papers
- TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit is a sequence-to-sequence encoder-decoder model that uses the Transformer architecture.
We show that our model achieves excellent performance in terms of separation, both with or without transcript conditioning.
We also measure the automatic speech recognition (ASR) performance and provide audio samples of speech synthesis to demonstrate the additional utility of our model.
arXiv Detail & Related papers (2023-08-21T01:52:01Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Lip2Vec: Efficient and Robust Visual Speech Recognition via
Latent-to-Latent Visual to Audio Representation Mapping [4.271091833712731]
We propose a simple approach, named Lip2Vec that is based on learning a prior model.
The proposed model compares favorably with fully-supervised learning methods on the LRS3 dataset achieving 26 WER.
We believe that reprogramming the VSR as an ASR task narrows the performance gap between the two and paves the way for more flexible formulations of lip reading.
arXiv Detail & Related papers (2023-08-11T12:59:02Z) - AV-data2vec: Self-supervised Learning of Audio-Visual Speech
Representations with Contextualized Target Representations [88.30635799280923]
We introduce AV-data2vec which builds audio-visual representations based on predicting contextualized representations.
Results on LRS3 show that AV-data2vec consistently outperforms existing methods with the same amount of data and model size.
arXiv Detail & Related papers (2023-02-10T02:55:52Z) - Audio-Visual Efficient Conformer for Robust Speech Recognition [91.3755431537592]
We propose to improve the noise of the recently proposed Efficient Conformer Connectionist Temporal Classification architecture by processing both audio and visual modalities.
Our experiments show that using audio and visual modalities allows to better recognize speech in the presence of environmental noise and significantly accelerate training, reaching lower WER with 4 times less training steps.
arXiv Detail & Related papers (2023-01-04T05:36:56Z) - LiRA: Learning Visual Speech Representations from Audio through
Self-supervision [53.18768477520411]
We propose Learning visual speech Representations from Audio via self-supervision (LiRA)
Specifically, we train a ResNet+Conformer model to predict acoustic features from unlabelled visual speech.
We show that our approach significantly outperforms other self-supervised methods on the Lip Reading in the Wild dataset.
arXiv Detail & Related papers (2021-06-16T23:20:06Z) - Audio-visual Speech Separation with Adversarially Disentangled Visual
Representation [23.38624506211003]
Speech separation aims to separate individual voice from an audio mixture of multiple simultaneous talkers.
In our model, we use the face detector to detect the number of speakers in the scene and use visual information to avoid the permutation problem.
Our proposed model is shown to outperform the state-of-the-art audio-only model and three audio-visual models.
arXiv Detail & Related papers (2020-11-29T10:48:42Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
This paper presents an audio visual automatic speech recognition (AV-ASR) system using a Transformer-based architecture.
We focus on the scene context provided by the visual information, to ground the ASR.
Our results are comparable to state-of-the-art Listen, Attend and Spell-based architectures.
arXiv Detail & Related papers (2020-04-29T09:32:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.