Late fusion ensembles for speech recognition on diverse input audio representations
- URL: http://arxiv.org/abs/2412.01861v1
- Date: Sun, 01 Dec 2024 10:19:24 GMT
- Title: Late fusion ensembles for speech recognition on diverse input audio representations
- Authors: Marin Jezidžić, Matej Mihelčić,
- Abstract summary: We explore diverse representations of speech audio, and their effect on a performance of late fusion ensemble of E-Branchformer models.
We show that improvements of $1% - 14%$ can still be achieved over the state-of-the-art models trained using comparable techniques.
- Score: 0.0
- License:
- Abstract: We explore diverse representations of speech audio, and their effect on a performance of late fusion ensemble of E-Branchformer models, applied to Automatic Speech Recognition (ASR) task. Although it is generally known that ensemble methods often improve the performance of the system even for speech recognition, it is very interesting to explore how ensembles of complex state-of-the-art models, such as medium-sized and large E-Branchformers, cope in this setting when their base models are trained on diverse representations of the input speech audio. The results are evaluated on four widely-used benchmark datasets: \textit{Librispeech, Aishell, Gigaspeech}, \textit{TEDLIUMv2} and show that improvements of $1\% - 14\%$ can still be achieved over the state-of-the-art models trained using comparable techniques on these datasets. A noteworthy observation is that such ensemble offers improvements even with the use of language models, although the gap is closing.
Related papers
- Developing Acoustic Models for Automatic Speech Recognition in Swedish [6.5458610824731664]
This paper is concerned with automatic continuous speech recognition using trainable systems.
The aim of this work is to build acoustic models for spoken Swedish.
arXiv Detail & Related papers (2024-04-25T12:03:14Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - Exploring Speech Recognition, Translation, and Understanding with
Discrete Speech Units: A Comparative Study [68.88536866933038]
Speech signals, typically sampled at rates in the tens of thousands per second, contain redundancies.
Recent investigations proposed the use of discrete speech units derived from self-supervised learning representations.
Applying various methods, such as de-duplication and subword modeling, can further compress the speech sequence length.
arXiv Detail & Related papers (2023-09-27T17:21:13Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Improving Code-Switching and Named Entity Recognition in ASR with Speech
Editing based Data Augmentation [22.38340990398735]
We propose a novel data augmentation method by applying the text-based speech editing model.
The experimental results on code-switching and NER tasks show that our proposed method can significantly outperform the audio splicing and neural TTS based data augmentation systems.
arXiv Detail & Related papers (2023-06-14T15:50:13Z) - AV-data2vec: Self-supervised Learning of Audio-Visual Speech
Representations with Contextualized Target Representations [88.30635799280923]
We introduce AV-data2vec which builds audio-visual representations based on predicting contextualized representations.
Results on LRS3 show that AV-data2vec consistently outperforms existing methods with the same amount of data and model size.
arXiv Detail & Related papers (2023-02-10T02:55:52Z) - Lip-Listening: Mixing Senses to Understand Lips using Cross Modality
Knowledge Distillation for Word-Based Models [0.03499870393443267]
This work builds on recent state-of-the-art word-based lipreading models by integrating sequence-level and frame-level Knowledge Distillation (KD) to their systems.
We propose a technique to transfer speech recognition capabilities from audio speech recognition systems to visual speech recognizers, where our goal is to utilize audio data during lipreading model training.
arXiv Detail & Related papers (2022-06-05T15:47:54Z) - Joint Speech Recognition and Audio Captioning [37.205642807313545]
Speech samples recorded in both indoor and outdoor environments are often contaminated with secondary audio sources.
We aim to bring together the growing field of automated audio captioning (AAC) and the thoroughly studied automatic speech recognition (ASR)
We propose several approaches for end-to-end joint modeling of ASR and AAC tasks.
arXiv Detail & Related papers (2022-02-03T04:42:43Z) - An Exploration of Self-Supervised Pretrained Representations for
End-to-End Speech Recognition [98.70304981174748]
We focus on the general applications of pretrained speech representations, on advanced end-to-end automatic speech recognition (E2E-ASR) models.
We select several pretrained speech representations and present the experimental results on various open-source and publicly available corpora for E2E-ASR.
arXiv Detail & Related papers (2021-10-09T15:06:09Z) - End-to-end Audio-visual Speech Recognition with Conformers [65.30276363777514]
We present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer (Conformer)
In particular, the audio and visual encoders learn to extract features directly from raw pixels and audio waveforms.
We show that our proposed models raise the state-of-the-art performance by a large margin in audio-only, visual-only, and audio-visual experiments.
arXiv Detail & Related papers (2021-02-12T18:00:08Z) - Audio-visual Speech Separation with Adversarially Disentangled Visual
Representation [23.38624506211003]
Speech separation aims to separate individual voice from an audio mixture of multiple simultaneous talkers.
In our model, we use the face detector to detect the number of speakers in the scene and use visual information to avoid the permutation problem.
Our proposed model is shown to outperform the state-of-the-art audio-only model and three audio-visual models.
arXiv Detail & Related papers (2020-11-29T10:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.