論文の概要: Neural Network Libraries: A Deep Learning Framework Designed from
Engineers' Perspectives
- arxiv url: http://arxiv.org/abs/2102.06725v1
- Date: Fri, 12 Feb 2021 19:12:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 10:43:38.538348
- Title: Neural Network Libraries: A Deep Learning Framework Designed from
Engineers' Perspectives
- Title(参考訳): ニューラルネットワークライブラリ - エンジニアの視点から設計されたディープラーニングフレームワーク
- Authors: Akio Hayakawa, Masato Ishii, Yoshiyuki Kobayashi, Akira Nakamura,
Takuya Narihira, Yukio Obuchi, Andrew Shin, Takuya Yashima, Kazuki Yoshiyama
- Abstract要約: エンジニアの視点から設計されたディープラーニングフレームワークであるNeural Network Librariesを紹介する。
私たちはそれぞれの設計原則とそのメリットを詳しく説明し、実験を通じて試みを検証する。
- 参考スコア(独自算出の注目度): 4.35486415816077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While there exist a plethora of deep learning tools and frameworks, the
fast-growing complexity of the field brings new demands and challenges, such as
more flexible network design, speedy computation on distributed setting, and
compatibility between different tools. In this paper, we introduce Neural
Network Libraries (https://nnabla.org), a deep learning framework designed from
engineer's perspective, with emphasis on usability and compatibility as its
core design principles. We elaborate on each of our design principles and its
merits, and validate our attempts via experiments.
- Abstract(参考訳): ディープラーニングツールやフレームワークは数多く存在するが、この分野の急速に増加する複雑さは、より柔軟なネットワーク設計、分散設定の高速な計算、さまざまなツール間の互換性など、新たな要求と課題をもたらす。
本稿では,ニューラルネットワークライブラリ(https://nnabla.org)について,ユーザビリティと互換性を重視した,エンジニアの視点から設計されたディープラーニングフレームワークについて紹介する。
私たちはそれぞれの設計原則とそのメリットを詳しく説明し、実験を通じて試みを検証する。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - COOL: A Constraint Object-Oriented Logic Programming Language and its
Neural-Symbolic Compilation System [0.0]
我々は論理的推論とニューラルネットワーク技術をシームレスに組み合わせたCOOLプログラミング言語を紹介した。
COOLはデータ収集を自律的に処理するために設計されており、ユーザから供給される初期データの必要性を軽減している。
ユーザプロンプトをコーディングプロセスに組み込んで、トレーニング中のリスクを低減し、ライフサイクルを通じてモデル間のインタラクションを強化する。
論文 参考訳(メタデータ) (2023-11-07T06:29:59Z) - CP-CNN: Core-Periphery Principle Guided Convolutional Neural Network [9.015666133509857]
我々は、ネットワーク配線パターンの設計と畳み込み操作のスパーシフィケーションにコア周辺原理を実装した。
私たちの研究は、人間の脳からの洞察をニューラルネットワークの設計に取り入れることで、脳にインスパイアされたAIの分野の成長に寄与します。
論文 参考訳(メタデータ) (2023-03-27T03:59:43Z) - DQNAS: Neural Architecture Search using Reinforcement Learning [6.33280703577189]
畳み込みニューラルネットワークは様々な画像関連アプリケーションで使われている。
本稿では,強化学習の原則を取り入れた,ニューラルネットワークの自動探索フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-17T04:01:47Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - Implementing Spiking Neural Networks on Neuromorphic Architectures: A
Review [0.19573380763700707]
我々は,ニューロモルフィックコンピューティングのシステムソフトウェア技術分野における将来が持つ課題と機会を強調する。
プラットフォームベース設計とハードウェア・ソフトウェア共同設計の両方に提案されているフレームワークの概要について概説する。
論文 参考訳(メタデータ) (2022-02-17T21:00:59Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
我々は,多タスクニューラルネットワークにおける分岐構造を自動的に定義する,微分可能なニューラルネットワーク探索に根ざした原理的アプローチを提案する。
本手法は,限られた資源予算内で高い性能の分岐構造を見いだすことができる。
論文 参考訳(メタデータ) (2020-08-24T09:49:19Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Deep Multimodal Neural Architecture Search [178.35131768344246]
様々なマルチモーダル学習タスクのための一般化された深層マルチモーダルニューラルアーキテクチャサーチ(MMnas)フレームワークを考案する。
マルチモーダル入力が与えられたら、まずプリミティブ演算のセットを定義し、その後、ディープエンコーダ-デコーダベースの統一バックボーンを構築する。
統合されたバックボーンの上にタスク固有のヘッドをアタッチして、異なるマルチモーダル学習タスクに取り組む。
論文 参考訳(メタデータ) (2020-04-25T07:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。