論文の概要: Cross-domain Time Series Forecasting with Attention Sharing
- arxiv url: http://arxiv.org/abs/2102.06828v1
- Date: Sat, 13 Feb 2021 00:26:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 16:06:41.949562
- Title: Cross-domain Time Series Forecasting with Attention Sharing
- Title(参考訳): 注意共有によるクロスドメイン時系列予測
- Authors: Xiaoyong Jin, Youngsuk Park, Danielle Maddix, Bernie Wang, Xifeng Yan
- Abstract要約: 本稿では,データ不足問題に対処する新しいドメイン適応フレームワークであるDomain Adaptation Forecaster(DAF)を提案する。
特に、ドメイン間のドメイン識別器と、個々のドメインに対するプリベートモジュールを備えたアテンションベースの共有モジュールを提案する。
これにより、ドメイン固有の機能をトレーニングしながら、ドメイン不変の潜在機能を生成させることで、ソースとターゲットドメインを共同でトレーニングすることができる。
- 参考スコア(独自算出の注目度): 10.180248006928107
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent years have witnessed deep neural net-works gaining increasing
popularity in the field oftime series forecasting. A primary reason of
theirsuccess is their ability to effectively capture com-plex temporal dynamics
across multiple relatedtime series. However, the advantages of thesedeep
forecasters only start to emerge in the pres-ence of a sufficient amount of
data. This poses achallenge for typical forecasting problems in prac-tice,
where one either has a small number of timeseries, or limited observations per
time series, orboth. To cope with the issue of data scarcity, wepropose a novel
domain adaptation framework,Domain Adaptation Forecaster (DAF), that lever-ages
the statistical strengths from another relevantdomain with abundant data
samples (source) toimprove the performance on the domain of inter-est with
limited data (target). In particular, we pro-pose an attention-based shared
module with a do-main discriminator across domains as well as pri-vate modules
for individual domains. This allowsus to jointly train the source and target
domains bygenerating domain-invariant latent features whileretraining
domain-specific features. Extensive ex-periments on various domains demonstrate
thatour proposed method outperforms state-of-the-artbaselines on synthetic and
real-world datasets.
- Abstract(参考訳): 近年、時系列予測の分野では、ディープニューラルネットワークの人気が高まっています。
成功のおもな理由は、複数の関連時間系列にわたるcom-plextemporic dynamicsを効果的に捉える能力である。
しかし、これらの深い予測者の利点は、十分な量のデータの存在によってのみ現れ始める。
これは、時系列の数が少なかったり、時系列ごとの観測が限られていたりする、prac-ticeの典型的な予測問題の原因となる。
データ希少性の問題に対処するため,新たなドメイン適応フレームワークであるDomain Adaptation Forecaster(DAF)を提案する。このフレームワークは,他の関連ドメインの統計的強みを豊富なデータサンプル(ソース)でレバーエイジングし,限られたデータ(ターゲット)で間接領域のパフォーマンスを向上させる。
特に、ドメイン間のドメイン識別器と、個々のドメインに対するプリベートモジュールを備えたアテンションベースの共有モジュールを提案する。
これにより、ドメイン固有の機能をトレーニングしながら、ドメイン不変の潜在機能を生成させることで、ソースとターゲットドメインを共同でトレーニングすることができる。
提案手法は、合成データセットと実世界のデータセットの最先端のベースラインを上回ります。
関連論文リスト
- Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
人間のポーズ推定(HPE)は最近、モーション分析、バーチャルリアリティー、ヘルスケア等に広く応用されているため、注目を集めている。
時間と労働集約的なアノテーションのために、ラベル付き現実世界のデータセットが不足している。
本稿では,ドメイン適応型人間のポーズ推定のための表現集約と分離を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-29T17:59:45Z) - Learning Latent Spaces for Domain Generalization in Time Series Forecasting [60.29403194508811]
時系列予測は多くの実世界のアプリケーションにおいて不可欠であるが、見つからない関連ドメインをうまく一般化するモデルの開発はまだ未定である。
本稿では,ドメイン間の時間的依存関係を規定する潜在因子をマイニングすることで時系列予測におけるドメイン一般化の枠組みを提案する。
提案手法では,新しい条件付き$beta$-Variational Autoencoder (VAE) を用いて,時系列データをトレンド周期および季節成分に分解する。
論文 参考訳(メタデータ) (2024-12-15T12:41:53Z) - Towards Generalisable Time Series Understanding Across Domains [10.350643783811174]
時系列の不均一性を扱うために特別に設計された新しい事前学習パラダイムを導入する。
本稿では、学習可能なドメインシグネチャ、二重マスキング戦略、正規化相互相関損失を持つトークンサを提案する。
私たちのコードと事前訓練されたウェイトはhttps://www.oetu.com/oetu/otis.comで公開されています。
論文 参考訳(メタデータ) (2024-10-09T17:09:30Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
この研究はドメイン境界を超越する統一モデルパラダイムを提唱する。
効果的なクロスドメインモデルを学ぶことは、以下の課題を提示します。
効果的なドメイン間時系列学習のためのUniTimeを提案する。
論文 参考訳(メタデータ) (2023-10-15T06:30:22Z) - Domain-incremental Cardiac Image Segmentation with Style-oriented Replay
and Domain-sensitive Feature Whitening [67.6394526631557]
M&Mは、各受信データセットから漸進的に学習し、時間が経つにつれて改善された機能で漸進的に更新する必要がある。
医学的シナリオでは、データのプライバシのため、過去のデータへのアクセスや保存が一般的に許可されないため、これは特に困難である。
本稿では,まず過去のドメイン入力を復元し,モデル最適化中に定期的に再生する新しいドメイン増分学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-09T13:07:36Z) - Forget Less, Count Better: A Domain-Incremental Self-Distillation
Learning Benchmark for Lifelong Crowd Counting [51.44987756859706]
オフザシェルフ法は複数のドメインを扱うのにいくつかの欠点がある。
生涯クラウドカウンティングは、壊滅的な忘れを緩和し、一般化能力を改善することを目的としている。
論文 参考訳(メタデータ) (2022-05-06T15:37:56Z) - Self-supervised Autoregressive Domain Adaptation for Time Series Data [9.75443057146649]
教師なしドメイン適応(UDA)は、視覚アプリケーションにおけるドメインシフト問題にうまく対処している。
これらの手法は、以下の理由により時系列データのパフォーマンスが制限される可能性がある。
本稿では,これらの制約に対処するための自己監督型自己回帰ドメイン適応(SLARDA)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-29T08:17:23Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。