CPP-Net: Context-aware Polygon Proposal Network for Nucleus Segmentation
- URL: http://arxiv.org/abs/2102.06867v1
- Date: Sat, 13 Feb 2021 05:59:52 GMT
- Title: CPP-Net: Context-aware Polygon Proposal Network for Nucleus Segmentation
- Authors: Shengcong Chen, Changxing Ding, Minfeng Liu, and Dacheng Tao
- Abstract summary: We propose a Context-aware Polygon Proposal Network ( CPP-Net) for nucleus segmentation.
First, we sample a point set rather than one single pixel within each cell for distance prediction.
Second, we propose a Confidence-based Weighting Module, which adaptively fuses the predictions from the sampled point set.
Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains the shape of the predicted polygons.
- Score: 71.81734047345587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nucleus segmentation is a challenging task due to the crowded distribution
and blurry boundaries of nuclei. Recent approaches represent nuclei by means of
polygons to differentiate between touching and overlapping nuclei and have
accordingly achieved promising performance. Each polygon is represented by a
set of centroid-to-boundary distances, which are in turn predicted by features
of the centroid pixel for a single nucleus. However, using the centroid pixel
alone does not provide sufficient contextual information for robust prediction.
To handle this problem, we propose a Context-aware Polygon Proposal Network
(CPP-Net) for nucleus segmentation. First, we sample a point set rather than
one single pixel within each cell for distance prediction. This strategy
substantially enhances contextual information and thereby improves the
robustness of the prediction. Second, we propose a Confidence-based Weighting
Module, which adaptively fuses the predictions from the sampled point set.
Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains
the shape of the predicted polygons. Here, the SAP loss is based on an
additional network that is pre-trained by means of mapping the centroid
probability map and the pixel-to-boundary distance maps to a different nucleus
representation. Extensive experiments justify the effectiveness of each
component in the proposed CPP-Net. Finally, CPP-Net is found to achieve
state-of-the-art performance on three publicly available databases, namely
DSB2018, BBBC06, and PanNuke. Code of this paper will be released.
Related papers
- DPA-P2PNet: Deformable Proposal-aware P2PNet for Accurate Point-based
Cell Detection [5.994317314012678]
Point-based cell detection (PCD) has garnered increased attention in computational pathology community.
Unlike mainstream PCD methods that rely on intermediate density map representations, the Point-to-Point network (P2PNet) has recently emerged as an end-to-end solution for PCD.
P2PNet is limited to decoding from a single-level feature map due to the scale-agnostic property of point proposals.
The proposed method directly extracts multi-scale features for decoding according to the coordinates of point proposals on hierarchical feature maps.
arXiv Detail & Related papers (2023-03-05T08:02:42Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
We propose a novel multitask learning network with a bending loss regularizer to separate overlapped nuclei accurately.
The newly proposed multitask learning architecture enhances the generalization by learning shared representation from three tasks.
The proposed bending loss defines high penalties to concave contour points with large curvatures, and applies small penalties to convex contour points with small curvatures.
arXiv Detail & Related papers (2021-09-30T17:29:44Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
We design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover.
It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths should be shortest.
It learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target.
arXiv Detail & Related papers (2020-12-07T01:34:38Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - PIE-NET: Parametric Inference of Point Cloud Edges [40.27043782820615]
We introduce an end-to-end learnable technique to robustly identify feature edges in 3D point cloud data.
Our deep neural network, coined PIE-NET, is trained for parametric inference of edges.
arXiv Detail & Related papers (2020-07-09T15:35:10Z) - Boundary-assisted Region Proposal Networks for Nucleus Segmentation [89.69059532088129]
Machine learning models cannot perform well because of large amount of crowded nuclei.
We devise a Boundary-assisted Region Proposal Network (BRP-Net) that achieves robust instance-level nucleus segmentation.
arXiv Detail & Related papers (2020-06-04T08:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.