論文の概要: Deep Convolutional and Recurrent Networks for Polyphonic Instrument
Classification from Monophonic Raw Audio Waveforms
- arxiv url: http://arxiv.org/abs/2102.06930v1
- Date: Sat, 13 Feb 2021 13:44:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 17:31:02.094481
- Title: Deep Convolutional and Recurrent Networks for Polyphonic Instrument
Classification from Monophonic Raw Audio Waveforms
- Title(参考訳): 単音素波形からの多声楽器分類のための深い畳み込み・再帰的ネットワーク
- Authors: Kleanthis Avramidis, Agelos Kratimenos, Christos Garoufis, Athanasia
Zlatintsi and Petros Maragos
- Abstract要約: サウンドイベント検出とオーディオ分類タスクは、伝統的にスペクトログラムなどのオーディオ信号の時間周波数表現を通じて対処されます。
効率的な特徴抽出器としてのディープニューラルネットワークは、分類目的にオーディオ信号を直接使用可能にする。
生の波形を深層学習モデルに入力するだけで,ポリフォニック・オーディオで楽器を認識する。
- 参考スコア(独自算出の注目度): 30.3491261167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sound Event Detection and Audio Classification tasks are traditionally
addressed through time-frequency representations of audio signals such as
spectrograms. However, the emergence of deep neural networks as efficient
feature extractors has enabled the direct use of audio signals for
classification purposes. In this paper, we attempt to recognize musical
instruments in polyphonic audio by only feeding their raw waveforms into deep
learning models. Various recurrent and convolutional architectures
incorporating residual connections are examined and parameterized in order to
build end-to-end classi-fiers with low computational cost and only minimal
preprocessing. We obtain competitive classification scores and useful
instrument-wise insight through the IRMAS test set, utilizing a parallel
CNN-BiGRU model with multiple residual connections, while maintaining a
significantly reduced number of trainable parameters.
- Abstract(参考訳): サウンドイベント検出とオーディオ分類タスクは、伝統的にスペクトログラムなどのオーディオ信号の時間周波数表現を通じて対処されます。
しかし、効率的な特徴抽出器としてのディープニューラルネットワークの出現により、分類目的に音声信号を直接利用できるようになった。
本論文では,生の波形を深層学習モデルに入力するだけで,ポリフォニックオーディオにおける楽器の認識を試みる。
計算コストが低く、プリプロセッシングが最小限であるエンドツーエンドのクラスバイフィアを構築するために、残留接続を組み込んだ様々な繰り返しおよび畳み込みアーキテクチャを検討し、パラメータ化します。
多数の残存接続を持つ並列CNN-BiGRUモデルを活用し、トレーニング可能なパラメータを大幅に削減しながら、競争的な分類スコアとIRMASテストセットによる有用なインサイトを得ます。
関連論文リスト
- Spectral and Rhythm Features for Audio Classification with Deep Convolutional Neural Networks [0.0]
畳み込みニューラルネットワーク(CNN)はコンピュータビジョンで広く使われている。
デジタル画像から抽出したスペクトルおよびリズムの特徴を音響的分類に用いることができる。
メルスケール分光図, メル周波数ケプストラム係数 (MFCC) などのスペクトル・リズム特性の異なる表現について検討した。
論文 参考訳(メタデータ) (2024-10-09T14:21:59Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
深層生成モデルは、様々な種類の表現で条件付けられた高忠実度オーディオを生成することができる。
これらのモデルは、条件付けに欠陥がある場合や不完全な場合、可聴アーチファクトを生成する傾向がある。
低ビットレート離散表現から任意の種類のオーディオモダリティを生成する高忠実度マルチバンド拡散ベースフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T22:14:29Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - An investigation of the reconstruction capacity of stacked convolutional
autoencoders for log-mel-spectrograms [2.3204178451683264]
音声処理アプリケーションでは、ハイレベルな表現に基づく表現力のある音声の生成は、高い需要を示す。
ニューラルネットワークのような現代のアルゴリズムは、楽器の圧縮に基づく表現型シンセサイザーの開発にインスピレーションを与えている。
本研究では,多種多様な楽器に対する時間周波数音声表現の圧縮のための畳み込み畳み込みオートエンコーダについて検討した。
論文 参考訳(メタデータ) (2023-01-18T17:19:04Z) - Simple Pooling Front-ends For Efficient Audio Classification [56.59107110017436]
入力音声特徴量における時間的冗長性を排除することは,効率的な音声分類に有効な方法である可能性が示唆された。
本稿では、単純な非パラメトリックプーリング操作を用いて冗長な情報を削減する単純なプールフロントエンド(SimPFs)のファミリーを提案する。
SimPFは、市販オーディオニューラルネットワークの浮動小数点演算数の半数以上を削減できる。
論文 参考訳(メタデータ) (2022-10-03T14:00:41Z) - Neural Waveshaping Synthesis [0.0]
ニューラルオーディオ合成に対する,新しい,軽量で完全な因果的アプローチを提案する。
ニューラルウェーブシェイピングユニット(NEWT)は、波形領域で直接動作する。
入力信号と出力信号の単純なアフィン変換によって複雑な鼓膜進化を生成する。
論文 参考訳(メタデータ) (2021-07-11T13:50:59Z) - Training a Deep Neural Network via Policy Gradients for Blind Source
Separation in Polyphonic Music Recordings [1.933681537640272]
音響信号における楽器の音の盲点分離法を提案する。
パラメトリックモデルを用いて個々の音色を記述し、辞書を訓練し、高調波の相対振幅を捉える。
提案アルゴリズムは,様々な音声サンプルに対して,特に低干渉で高品質な結果が得られる。
論文 参考訳(メタデータ) (2021-07-09T06:17:04Z) - PILOT: Introducing Transformers for Probabilistic Sound Event
Localization [107.78964411642401]
本稿では,受信したマルチチャンネル音声信号の時間的依存性を自己アテンション機構によってキャプチャする,トランスフォーマーに基づく新しい音声イベント定位フレームワークを提案する。
このフレームワークは, 公開されている3つの音声イベントローカライズデータセットを用いて評価し, 局所化誤差と事象検出精度の点で最先端の手法と比較した。
論文 参考訳(メタデータ) (2021-06-07T18:29:19Z) - Sampling-Frequency-Independent Audio Source Separation Using Convolution
Layer Based on Impulse Invariant Method [67.24600975813419]
単一深層ニューラルネットワークを用いて任意のサンプリング周波数を処理できる畳み込み層を提案する。
提案層の導入により,従来の音源分離モデルが未知のサンプリング周波数でも一貫して動作できることを示した。
論文 参考訳(メタデータ) (2021-05-10T02:33:42Z) - Fast accuracy estimation of deep learning based multi-class musical
source separation [79.10962538141445]
本稿では,ニューラルネットワークのトレーニングやチューニングを行うことなく,任意のデータセットにおける楽器の分離性を評価する手法を提案する。
理想的な比マスクを持つオラクルの原理に基づいて、我々の手法は最先端のディープラーニング手法の分離性能を推定するための優れたプロキシである。
論文 参考訳(メタデータ) (2020-10-19T13:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。