Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition
- URL: http://arxiv.org/abs/2102.07045v3
- Date: Tue, 28 Sep 2021 05:39:49 GMT
- Title: Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition
- Authors: Yukio Kawashima, Erika Lloyd, Marc P. Coons, Yunseong Nam, Shunji
Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin
Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima
Alidoust, Arman Zaribafiyan, Takeshi Yamazaki
- Abstract summary: We experimentally demonstrate an end-to-end pipeline that focuses on minimizing quantum resources while maintaining accuracy.
Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons.
Our experimental results are an early demonstration of the potential for problem decomposition to accurately simulate large molecules on quantum hardware.
- Score: 41.760443413408915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers have the potential to advance material design and drug
discovery by performing costly electronic structure calculations. A critical
aspect of this application requires optimizing the limited resources of the
quantum hardware. Here, we experimentally demonstrate an end-to-end pipeline
that focuses on minimizing quantum resources while maintaining accuracy. Using
density matrix embedding theory as a problem decomposition technique, and an
ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without
freezing any electrons. The originally 20-qubit system is decomposed into 10
two-qubit problems, making it amenable to currently available hardware.
Combining this decomposition with a qubit coupled cluster circuit ansatz,
circuit optimization, and density matrix purification, we accurately reproduce
the potential energy curve in agreement with the full configuration interaction
energy in the minimal basis set. Our experimental results are an early
demonstration of the potential for problem decomposition to accurately simulate
large molecules on quantum hardware.
Related papers
- Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction [0.4909687476363595]
We embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections (DBBSC)
We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit.
The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties.
arXiv Detail & Related papers (2024-05-19T14:31:01Z) - Implementation of the Density-functional Theory on Quantum Computers
with Linear Scaling with respect to the Number of Atoms [1.4502611532302039]
Density-functional theory (DFT) has revolutionized computer simulations in chemistry and material science.
A faithful implementation of the theory requires self-consistent calculations.
This article presents a quantum algorithm that has a linear scaling with respect to the number of atoms.
arXiv Detail & Related papers (2023-07-13T21:17:58Z) - Quantum simulation of battery materials using ionic pseudopotentials [0.0]
We introduce a quantum algorithm that uses pseudopotentials to reduce the cost of simulating periodic materials on a quantum computer.
We use a qubitization-based quantum phase estimation algorithm that employs a first-quantization representation of the Hamiltonian in a plane-wave basis.
arXiv Detail & Related papers (2023-02-15T23:02:06Z) - Experimental quantum computational chemistry with optimised unitary coupled cluster ansatz [23.6818896497932]
Experimental realisation of scalable and high-precision quantum chemistry simulation remains elusive.
We push forward the limit of experimental quantum computational chemistry and successfully scale up the implementation of VQE with an optimised unitary coupled-cluster ansatz to 12 qubits.
arXiv Detail & Related papers (2022-12-15T18:04:28Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Toward Practical Quantum Embedding Simulation of Realistic Chemical
Systems on Near-term Quantum Computers [10.26362298019201]
We numerically test the method for the hydrogenation reaction of C6H8 and the equilibrium geometry of the C18 molecule, with basis sets up to cc-pVDZ.
Our work implies the possibility of solving industrial chemical problems on near-term quantum devices.
arXiv Detail & Related papers (2021-09-16T15:44:38Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.