Toward Practical Quantum Embedding Simulation of Realistic Chemical
Systems on Near-term Quantum Computers
- URL: http://arxiv.org/abs/2109.08062v1
- Date: Thu, 16 Sep 2021 15:44:38 GMT
- Title: Toward Practical Quantum Embedding Simulation of Realistic Chemical
Systems on Near-term Quantum Computers
- Authors: Weitang Li, Zigeng Huang, Changsu Cao, Yifei Huang, Zhigang Shuai,
Xiaoming Sun, Jinzhao Sun, Xiao Yuan, and Dingshun Lv
- Abstract summary: We numerically test the method for the hydrogenation reaction of C6H8 and the equilibrium geometry of the C18 molecule, with basis sets up to cc-pVDZ.
Our work implies the possibility of solving industrial chemical problems on near-term quantum devices.
- Score: 10.26362298019201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has recently exhibited great potentials in predicting
chemical properties for various applications in drug discovery, material
design, and catalyst optimization. Progress has been made in simulating small
molecules, such as LiH and hydrogen chains of up to 12 qubits, by using quantum
algorithms such as variational quantum eigensolver (VQE). Yet, originating from
limitations of the size and the fidelity of near-term quantum hardware, how to
accurately simulate large realistic molecules remains a challenge. Here,
integrating an adaptive energy sorting strategy and a classical computational
method, the density matrix embedding theory, which effectively finds a
shallower quantum circuit and reduces the problem size, respectively, we show a
means to circumvent the limitations and demonstrate the potential toward
solving real chemical problems. We numerically test the method for the
hydrogenation reaction of C6H8 and the equilibrium geometry of the C18
molecule, with basis sets up to cc-pVDZ (at most 144 qubits). The simulation
results show accuracies comparable to those of advanced quantum chemistry
methods such as coupled-cluster or even full configuration interaction, while
the number of qubits required is reduced by an order of magnitude (from 144
qubits to 16 qubits for the C18 molecule) compared to conventional VQE. Our
work implies the possibility of solving industrial chemical problems on
near-term quantum devices.
Related papers
- Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
arXiv Detail & Related papers (2024-08-20T12:50:15Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Simulating Chemistry on Bosonic Quantum Devices [30.89742280590898]
Bosonic quantum devices offer a novel approach to realize quantum computations.
We review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems.
arXiv Detail & Related papers (2024-04-16T01:54:50Z) - Pushing the Limits of Quantum Computing for Simulating PFAS Chemistry [0.3655818759482589]
Solving the electronic Schrodinger equation is the core problem of computational chemistry.
We propose an end-to-end quantum chemistry pipeline based on the variational quantum eigensolver (VQE) algorithm.
Our platform orchestrates hundreds of simulation jobs on compute resources to efficiently complete ab initio chemistry experiments.
arXiv Detail & Related papers (2023-11-02T13:58:02Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - Exploring the scaling limitations of the variational quantum eigensolver
with the bond dissociation of hydride diatomic molecules [0.0]
Materials simulations involving strongly correlated electrons pose fundamental challenges to state-of-the-art electronic structure methods.
No quantum computer has simulated a molecule of a size and complexity relevant to real-world applications, despite the fact that the variational quantum eigensolver algorithm can predict chemically accurate total energies.
We show that the inclusion of d-orbitals and the use of the UCCSD ansatz, which are both necessary to capture the correct TiH physics, dramatically increase the cost of this problem.
arXiv Detail & Related papers (2022-08-15T19:21:17Z) - Towards a Larger Molecular Simulation on the Quantum Computer: Up to 28
Qubits Systems Accelerated by Point Group Symmetry [8.078983761447118]
A quantum-classical hybrid optimization scheme known as the variational quantum eigensolver(VQE) is preferred for noisy intermediate-scale quantum devices.
In this work, we employ the point group symmetry to reduce the number of operators in constructing ansatz so as to achieve a more compact quantum circuit.
A significant reduction of up to 82% of the operator numbers is reached on C2H4, which enables the largest molecule ever numerically simulated by VQE-UCC.
arXiv Detail & Related papers (2021-09-05T16:04:14Z) - Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition [41.760443413408915]
We experimentally demonstrate an end-to-end pipeline that focuses on minimizing quantum resources while maintaining accuracy.
Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons.
Our experimental results are an early demonstration of the potential for problem decomposition to accurately simulate large molecules on quantum hardware.
arXiv Detail & Related papers (2021-02-14T01:47:52Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.