論文の概要: Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers
- arxiv url: http://arxiv.org/abs/2102.07060v1
- Date: Sun, 14 Feb 2021 03:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 07:21:36.464091
- Title: Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers
- Title(参考訳): 自己構成型コンパタンスサンプリングを用いた配電盤のブラックボックスシミュレーションの効率向上
- Authors: Anand Deo, Karthyek Murthy
- Abstract要約: 本稿では,特徴量に基づく決定規則,混合整数線形プログラム,ディープニューラルネットワークなどのツールによりモデル化された目的の分布テールを測定するための新しい重要サンプリング(is)方式を提案する。
従来の効率的なISアプローチは、基本的な確率分布と目的にサンプラーを複雑に調整する必要があるため、実現可能性とスケーラビリティの懸念に苦しんでいます。
この課題は、少ない希少な試料で観測される濃度特性を暗黙的に再現する変換を用いて、有効なIS分布の選択を自動化することで、提案されたブラックボックス方式で克服される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the increasing adoption of models which facilitate greater
automation in risk management and decision-making, this paper presents a novel
Importance Sampling (IS) scheme for measuring distribution tails of objectives
modelled with enabling tools such as feature-based decision rules, mixed
integer linear programs, deep neural networks, etc. Conventional efficient IS
approaches suffer from feasibility and scalability concerns due to the need to
intricately tailor the sampler to the underlying probability distribution and
the objective. This challenge is overcome in the proposed black-box scheme by
automating the selection of an effective IS distribution with a transformation
that implicitly learns and replicates the concentration properties observed in
less rare samples. This novel approach is guided by a large deviations
principle that brings out the phenomenon of self-similarity of optimal IS
distributions. The proposed sampler is the first to attain asymptotically
optimal variance reduction across a spectrum of multivariate distributions
despite being oblivious to the underlying structure. The large deviations
principle additionally results in new distribution tail asymptotics capable of
yielding operational insights. The applicability is illustrated by considering
product distribution networks and portfolio credit risk models informed by
neural networks as examples.
- Abstract(参考訳): 本稿では,リスク管理と意思決定の自動化を促進するモデルの普及に動機づけられ,特徴量に基づく決定ルール,混合整数線形プログラム,ディープニューラルネットワークなどのツールによりモデル化された目的の分散テールを測定するための新しい重要サンプリング(is)方式を提案する。
従来の効率的なISアプローチは、基本的な確率分布と目的にサンプラーを複雑に調整する必要があるため、実現可能性とスケーラビリティの懸念に苦しんでいます。
この課題は、少ない希少サンプルで観察された濃度特性を暗黙的に学習し複製する変換により、有効なIS分布の選択を自動化することによって、提案されたブラックボックススキームで克服される。
この新しいアプローチは、最適なIS分布の自己相似性の現象をもたらす大きな偏差原理によって導かれる。
提案手法は, 基礎構造に従わなくても, 多変量分布のスペクトルを横断する漸近的最適分散還元を実現する最初の方法である。
大偏差原理はさらに、操作的洞察を与えることができる新しい分布末尾漸近論をもたらす。
製品流通ネットワークとポートフォリオ信用リスクモデルについて,ニューラルネットワークを例に挙げて,適用可能性を示す。
関連論文リスト
- Estimating Regression Predictive Distributions with Sample Networks [17.935136717050543]
モデル不確実性に対する一般的なアプローチは、パラメトリック分布を選択し、最大推定を用いてデータに適合させることである。
選択されたパラメトリック形式は、データ生成分布に不適合であり、信頼できない不確実性推定をもたらす。
出力分布にパラメトリック形式を指定することを避けるため,不確実性をモデル化するためのフレキシブルでスケーラブルなアーキテクチャであるSampleNetを提案する。
論文 参考訳(メタデータ) (2022-11-24T17:23:29Z) - BR-SNIS: Bias Reduced Self-Normalized Importance Sampling [11.150337082767862]
重要サンプリング(Importance Smpling、IS)とは、提案分布と関連する重要度から独立したサンプルを用いて、目標分布下での期待を近似する手法である。
本稿では,SNISの複雑さが本質的に同じであり,分散を増大させることなくバイアスを大幅に低減するBR-SNISを提案する。
提案アルゴリズムには、新しいバイアス、分散、高確率境界を含む厳密な理論的結果を与える。
論文 参考訳(メタデータ) (2022-07-13T17:14:10Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
トラリミー予測は将来の力学のマルチモーダルな性質を捉えるジレンマと対立する。
本研究では,パーソナライズされた動作パターンを予測するDisDisDis(Disdis)手法を提案する。
本手法は,プラグイン・アンド・プレイモジュールとして既存のマルチモーダル予測モデルと統合することができる。
論文 参考訳(メタデータ) (2021-07-29T17:42:12Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Goal-oriented adaptive sampling under random field modelling of response
probability distributions [0.6445605125467573]
応答分布の空間的変動がそれらの平均および/または分散だけでなく、例えば、形状や一様性、多様性などを含む他の特徴も考慮する。
我々の貢献は、それによって引き起こされる確率分布の場をモデル化する非パラメトリックベイズアプローチに基づいている。
論文 参考訳(メタデータ) (2021-02-15T15:55:23Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - A Neural Network MCMC sampler that maximizes Proposal Entropy [3.4698840925433765]
ニューラルネットワークでサンプルを増強することで、効率が向上する可能性がある。
我々のネットワークアーキテクチャは、ターゲット分布の勾配を利用して提案を生成する。
適応型サンプリング器はランゲヴィン力学サンプリング器よりもはるかに高い提案エントロピーで非バイアスサンプリングを実現する。
論文 参考訳(メタデータ) (2020-10-07T18:01:38Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z) - Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs) [0.0]
GAN(Generative Adversarial Network)をベースとしたデータ駆動型分散ロバストな制約付きプログラミングフレームワークを提案する。
非パラメトリックかつ教師なしの方法で、歴史的データから分布情報を完全抽出するために、GANを適用する。
提案手法は需要不確実性の下でサプライチェーン最適化に適用される。
論文 参考訳(メタデータ) (2020-02-28T00:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。