論文の概要: Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers
- arxiv url: http://arxiv.org/abs/2102.07060v3
- Date: Sat, 8 Jul 2023 04:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 19:54:10.520064
- Title: Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers
- Title(参考訳): 自己構成型コンパタンスサンプリングを用いた配電盤のブラックボックスシミュレーションの効率向上
- Authors: Anand Deo, Karthyek Murthy
- Abstract要約: 本稿では,線形プログラムや整数線形プログラム,ピースワイド線形・二次目的,ディープニューラルネットワークで指定された特徴マップなど,多種多様なツールでモデル化されたパフォーマンス指標の分布を推定する,新しいImportance Smpling(IS)方式を提案する。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel Importance Sampling (IS) scheme for estimating
distribution tails of performance measures modeled with a rich set of tools
such as linear programs, integer linear programs, piecewise linear/quadratic
objectives, feature maps specified with deep neural networks, etc. The
conventional approach of explicitly identifying efficient changes of measure
suffers from feasibility and scalability concerns beyond highly stylized
models, due to their need to be tailored intricately to the objective and the
underlying probability distribution. This bottleneck is overcome in the
proposed scheme with an elementary transformation which is capable of
implicitly inducing an effective IS distribution in a variety of models by
replicating the concentration properties observed in less rare samples. This
novel approach is guided by developing a large deviations principle that brings
out the phenomenon of self-similarity of optimal IS distributions. The proposed
sampler is the first to attain asymptotically optimal variance reduction across
a spectrum of multivariate distributions despite being oblivious to the
specifics of the underlying model. Its applicability is illustrated with
contextual shortest path and portfolio credit risk models informed by neural
networks
- Abstract(参考訳): 本稿では,線形プログラム,整数線形プログラム,分断線形・二次目的,ディープニューラルネットワークで指定された特徴マップなどのツール群をモデルとした,パフォーマンス尺度の分布テールを推定するための新しい重要サンプリング(is)スキームを提案する。
測度の効率的な変化を明確に識別する従来のアプローチは、目的と基礎となる確率分布に複雑に調整する必要があるため、高度にスタイル化されたモデルを超えて実現可能性や拡張性に関する懸念に悩まされる。
このボトルネックは, 希少な試料で観測される濃度特性を再現することにより, 種々のモデルにおいて有効IS分布を暗黙的に誘導できる基本変換法によって克服される。
この新しいアプローチは、最適なIS分布の自己相似性の現象をもたらす大きな偏差原理を開発することで導かれる。
提案したサンプリング器は,基礎モデルの特異性に難渋するにもかかわらず,多変量分布のスペクトル間で漸近的に最適な分散化を実現する最初のものである。
その適用性は、ニューラルネットワークによって伝達される文脈的最短経路とポートフォリオクレジットリスクモデルで示される
関連論文リスト
- Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
本稿では,ニューラルネットワークによる安定確率分布の伝播手法を提案する。
提案手法は局所線形化に基づいており,ReLU非線型性に対する全変動距離の近似値として最適であることを示す。
論文 参考訳(メタデータ) (2024-02-13T09:40:19Z) - Variational autoencoder with weighted samples for high-dimensional
non-parametric adaptive importance sampling [0.0]
既存のフレームワークを、新しい目的関数を導入することで、重み付けされたサンプルの場合に拡張する。
モデルに柔軟性を加え、マルチモーダル分布を学習できるようにするため、学習可能な事前分布を考える。
提案手法は,既存の適応的重要度サンプリングアルゴリズムを用いて,目標分布から点を抽出し,高次元で稀な事象確率を推定する。
論文 参考訳(メタデータ) (2023-10-13T15:40:55Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
ニューラルネットワーク生成の標準パラダイムは、最適化方法として最大推定(MLE)を採用する。
言語生成に適用するための実践的境界を開発する。
本稿では,TVD推定のトレードオフのバランスをとるためのTaiLr の目標について紹介する。
論文 参考訳(メタデータ) (2023-02-26T16:32:52Z) - BR-SNIS: Bias Reduced Self-Normalized Importance Sampling [11.150337082767862]
重要サンプリング(Importance Smpling、IS)とは、提案分布と関連する重要度から独立したサンプルを用いて、目標分布下での期待を近似する手法である。
本稿では,SNISの複雑さが本質的に同じであり,分散を増大させることなくバイアスを大幅に低減するBR-SNISを提案する。
提案アルゴリズムには、新しいバイアス、分散、高確率境界を含む厳密な理論的結果を与える。
論文 参考訳(メタデータ) (2022-07-13T17:14:10Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
本稿では,スパース構造多変量ガウシアンを用いて,高密度画像予測タスクのための閉形式近似器を提案する。
正規分布における予測の不確かさと構造的相関を、サンプリング単独で暗黙的にではなく、明示的に捉える。
単分子深度推定におけるアプローチの利点を実証し,本手法の利点が同等の定量的性能で得られることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:34:43Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
深部生成モデルを用いた特異分布の非パラメトリック推定の可能性について検討する。
我々は、インスタンスノイズでデータを摂動することで、新しい効果的な解が存在することを証明した。
また、より深い生成モデルにより効率的に推定できる分布のクラスを特徴付ける。
論文 参考訳(メタデータ) (2021-05-09T23:13:58Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。