Multi-Texture GAN: Exploring the Multi-Scale Texture Translation for
Brain MR Images
- URL: http://arxiv.org/abs/2102.07225v1
- Date: Sun, 14 Feb 2021 19:14:06 GMT
- Title: Multi-Texture GAN: Exploring the Multi-Scale Texture Translation for
Brain MR Images
- Authors: Xiaobin Hu
- Abstract summary: A significant percentage of existing algorithms cannot explicitly exploit and preserve texture details from target scanners.
In this paper, we design a multi-scale texture transfer to enrich the reconstruction images with more details.
Our method achieves superior results in inter-protocol or inter-scanner translation over state-of-the-art methods.
- Score: 1.9163481966968943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inter-scanner and inter-protocol discrepancy in MRI datasets are known to
lead to significant quantification variability. Hence image-to-image or
scanner-to-scanner translation is a crucial frontier in the area of medical
image analysis with a lot of potential applications. Nonetheless, a significant
percentage of existing algorithms cannot explicitly exploit and preserve
texture details from target scanners and offers individual solutions towards
specialized task-specific architectures. In this paper, we design a multi-scale
texture transfer to enrich the reconstruction images with more details.
Specifically, after calculating textural similarity, the multi-scale texture
can adaptively transfer the texture information from target images or reference
images to restored images. Different from the pixel-wise matching space as done
by previous algorithms, we match texture features in a multi-scale scheme
implemented in the neural space. The matching mechanism can exploit multi-scale
neural transfer that encourages the model to grasp more semantic-related and
lesion-related priors from the target or reference images. We evaluate our
multi-scale texture GAN on three different tasks without any task-specific
modifications: cross-protocol super-resolution of diffusion MRI, T1-Flair, and
Flair-T2 modality translation. Our multi-texture GAN rehabilitates more
high-resolution structures (i.e., edges and anatomy), texture (i.e., contrast
and pixel intensities), and lesion information (i.e., tumor). The extensively
quantitative and qualitative experiments demonstrate that our method achieves
superior results in inter-protocol or inter-scanner translation over
state-of-the-art methods.
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - Enhancing CT Image synthesis from multi-modal MRI data based on a
multi-task neural network framework [16.864720020158906]
We propose a versatile multi-task neural network framework, based on an enhanced Transformer U-Net architecture.
We decompose the traditional problem of synthesizing CT images into distinct subtasks.
To enhance the framework's versatility in handling multi-modal data, we expand the model with multiple image channels.
arXiv Detail & Related papers (2023-12-13T18:22:38Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
Loss of corresponding image resolution degrades the overall performance of medical image diagnosis.
Deep learning based single image super resolution (SISR) algorithms has revolutionized the overall diagnosis framework.
This work proposes generative adversarial network (GAN) with deep multi-attention modules to learn high-frequency information from low-frequency data.
arXiv Detail & Related papers (2021-10-22T10:13:46Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.