And/or trade-off in artificial neurons: impact on adversarial robustness
- URL: http://arxiv.org/abs/2102.07389v3
- Date: Mon, 22 May 2023 15:37:24 GMT
- Title: And/or trade-off in artificial neurons: impact on adversarial robustness
- Authors: Alessandro Fontana
- Abstract summary: Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
- Score: 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of neural networks, the issue of classification
robustness remains, particularly highlighted by adversarial examples. In this
paper, we address this challenge by focusing on the continuum of functions
implemented in artificial neurons, ranging from pure AND gates to pure OR
gates. Our hypothesis is that the presence of a sufficient number of OR-like
neurons in a network can lead to classification brittleness and increased
vulnerability to adversarial attacks. We define AND-like neurons and propose
measures to increase their proportion in the network. These measures involve
rescaling inputs to the [-1,1] interval and reducing the number of points in
the steepest section of the sigmoidal activation function. A crucial component
of our method is the comparison between a neuron's output distribution when fed
with the actual dataset and a randomised version called the "scrambled
dataset." Experimental results on the MNIST dataset suggest that our approach
holds promise as a direction for further exploration.
Related papers
- Confidence Regulation Neurons in Language Models [91.90337752432075]
This study investigates the mechanisms by which large language models represent and regulate uncertainty in next-token predictions.
Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits.
token frequency neurons, which we describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution.
arXiv Detail & Related papers (2024-06-24T01:31:03Z) - DANAA: Towards transferable attacks with double adversarial neuron
attribution [37.33924432015966]
We propose a double adversarial neuron attribution attack method, termed DANAA', to obtain more accurate feature importance estimation.
The goal is to measure the weight of individual neurons and retain the features that are more important towards transferability.
arXiv Detail & Related papers (2023-10-16T14:11:32Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Improving Adversarial Transferability via Neuron Attribution-Based
Attacks [35.02147088207232]
We propose the Neuron-based Attack (NAA), which conducts feature-level attacks with more accurate neuron importance estimations.
We derive an approximation scheme of neuron attribution to tremendously reduce the overhead.
Experiments confirm the superiority of our approach to the state-of-the-art benchmarks.
arXiv Detail & Related papers (2022-03-31T13:47:30Z) - Adversarial Robustness in Deep Learning: Attacks on Fragile Neurons [0.6899744489931016]
We identify fragile and robust neurons of deep learning architectures using nodal dropouts of the first convolutional layer.
We correlate these neurons with the distribution of adversarial attacks on the network.
arXiv Detail & Related papers (2022-01-31T14:34:07Z) - Neuronal Correlation: a Central Concept in Neural Network [22.764342635264452]
We show that neuronal correlation can be efficiently estimated via weight matrix.
We show that neuronal correlation significantly impacts on the accuracy of entropy estimation in high-dimensional hidden spaces.
arXiv Detail & Related papers (2022-01-22T15:01:50Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
We propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors.
We propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection.
arXiv Detail & Related papers (2021-05-18T15:51:24Z) - The Compact Support Neural Network [6.47243430672461]
We present a neuron generalization that has the standard dot-product-based neuron and the RBF neuron as two extreme cases of a shape parameter.
We show how to avoid difficulties in training a neural network with such neurons, by starting with a trained standard neural network and gradually increasing the shape parameter to the desired value.
arXiv Detail & Related papers (2021-04-01T06:08:09Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.