The Compact Support Neural Network
- URL: http://arxiv.org/abs/2104.00269v1
- Date: Thu, 1 Apr 2021 06:08:09 GMT
- Title: The Compact Support Neural Network
- Authors: Adrian Barbu, Hongyu Mou
- Abstract summary: We present a neuron generalization that has the standard dot-product-based neuron and the RBF neuron as two extreme cases of a shape parameter.
We show how to avoid difficulties in training a neural network with such neurons, by starting with a trained standard neural network and gradually increasing the shape parameter to the desired value.
- Score: 6.47243430672461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are popular and useful in many fields, but they have the
problem of giving high confidence responses for examples that are away from the
training data. This makes the neural networks very confident in their
prediction while making gross mistakes, thus limiting their reliability for
safety-critical applications such as autonomous driving, space exploration,
etc. In this paper, we present a neuron generalization that has the standard
dot-product-based neuron and the RBF neuron as two extreme cases of a shape
parameter. Using ReLU as the activation function we obtain a novel neuron that
has compact support, which means its output is zero outside a bounded domain.
We show how to avoid difficulties in training a neural network with such
neurons, by starting with a trained standard neural network and gradually
increasing the shape parameter to the desired value. Through experiments on
standard benchmark datasets, we show the promise of the proposed approach, in
that it can have good prediction accuracy on in-distribution samples while
being able to consistently detect and have low confidence on
out-of-distribution samples.
Related papers
- Residual Random Neural Networks [0.0]
Single-layer feedforward neural network with random weights is a recurring motif in the neural networks literature.
We show that one can obtain good classification results even if the number of hidden neurons has the same order of magnitude as the dimensionality of the data samples.
arXiv Detail & Related papers (2024-10-25T22:00:11Z) - Verified Neural Compressed Sensing [58.98637799432153]
We develop the first (to the best of our knowledge) provably correct neural networks for a precise computational task.
We show that for modest problem dimensions (up to 50), we can train neural networks that provably recover a sparse vector from linear and binarized linear measurements.
We show that the complexity of the network can be adapted to the problem difficulty and solve problems where traditional compressed sensing methods are not known to provably work.
arXiv Detail & Related papers (2024-05-07T12:20:12Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
We establish algorithm-dependent risk bounds for learning two-layer ReLU convolutional neural networks with label-flipping noise.
We show that, under mild conditions, the neural network trained by gradient descent can achieve near-zero training loss and Bayes optimal test risk.
arXiv Detail & Related papers (2023-03-07T18:59:38Z) - Consistency of Neural Networks with Regularization [0.0]
This paper proposes the general framework of neural networks with regularization and prove its consistency.
Two types of activation functions: hyperbolic function(Tanh) and rectified linear unit(ReLU) have been taken into consideration.
arXiv Detail & Related papers (2022-06-22T23:33:39Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
Deep neural network often gets trapped into a local minimum in training.
New kernel-expanded neural network (K-StoNet) model reformulates the network as a latent variable model.
Model can be easily trained using the imputationregularized optimization (IRO) algorithm.
arXiv Detail & Related papers (2022-01-14T06:42:42Z) - Improving Spiking Neural Network Accuracy Using Time-based Neurons [0.24366811507669117]
Research on neuromorphic computing systems based on low-power spiking neural networks using analog neurons is in the spotlight.
As technology scales down, analog neurons are difficult to scale, and they suffer from reduced voltage headroom/dynamic range and circuit nonlinearities.
This paper first models the nonlinear behavior of existing current-mirror-based voltage-domain neurons designed in a 28nm process, and show SNN inference accuracy can be severely degraded by the effect of neuron's nonlinearity.
We propose a novel neuron, which processes incoming spikes in the time domain and greatly improves the linearity, thereby improving the inference accuracy compared to the
arXiv Detail & Related papers (2022-01-05T00:24:45Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.