DAC: Deep Autoencoder-based Clustering, a General Deep Learning
Framework of Representation Learning
- URL: http://arxiv.org/abs/2102.07472v1
- Date: Mon, 15 Feb 2021 11:31:00 GMT
- Title: DAC: Deep Autoencoder-based Clustering, a General Deep Learning
Framework of Representation Learning
- Authors: Si Lu and Ruisi Li
- Abstract summary: We propose DAC, Deep Autoencoder-based Clustering, a data-driven framework to learn clustering representations using deep neuron networks.
Experiment results show that our approach could effectively boost performance of the KMeans clustering algorithm on a variety of datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering performs an essential role in many real world applications, such
as market research, pattern recognition, data analysis, and image processing.
However, due to the high dimensionality of the input feature values, the data
being fed to clustering algorithms usually contains noise and thus could lead
to in-accurate clustering results. While traditional dimension reduction and
feature selection algorithms could be used to address this problem, the simple
heuristic rules used in those algorithms are based on some particular
assumptions. When those assumptions does not hold, these algorithms then might
not work. In this paper, we propose DAC, Deep Autoencoder-based Clustering, a
generalized data-driven framework to learn clustering representations using
deep neuron networks. Experiment results show that our approach could
effectively boost performance of the K-Means clustering algorithm on a variety
types of datasets.
Related papers
- GBCT: An Efficient and Adaptive Granular-Ball Clustering Algorithm for Complex Data [49.56145012222276]
We propose a new clustering algorithm called granular-ball clustering (GBCT) via granular-ball computing.
GBCT forms clusters according to the relationship between granular-balls, instead of the traditional point relationship.
As granular-balls can fit various complex data, GBCT performs much better in non-spherical data sets than other traditional clustering methods.
arXiv Detail & Related papers (2024-10-17T07:32:05Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - A Machine Learning-Based Framework for Clustering Residential
Electricity Load Profiles to Enhance Demand Response Programs [0.0]
We present a novel machine learning based framework in order to achieve optimal load profiling through a real case study.
In this paper, we present a novel machine learning based framework in order to achieve optimal load profiling through a real case study.
arXiv Detail & Related papers (2023-10-31T11:23:26Z) - Privacy-preserving Continual Federated Clustering via Adaptive Resonance
Theory [11.190614418770558]
In the clustering domain, various algorithms with a federated learning framework (i.e., federated clustering) have been actively studied.
This paper proposes a privacy-preserving continual federated clustering algorithm.
Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior clustering performance.
arXiv Detail & Related papers (2023-09-07T05:45:47Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Clustering algorithms for Block Markov Chains possess theoretical optimality guarantees.
In particular, our sequential data is derived from human DNA, written text, animal movement data and financial markets.
It is found that the Block Markov Chain model assumption can indeed produce meaningful insights in exploratory data analyses.
arXiv Detail & Related papers (2022-10-04T15:22:39Z) - KnAC: an approach for enhancing cluster analysis with background
knowledge and explanations [0.20999222360659603]
We present Knowledge Augmented Clustering (KnAC), which main goal is to confront expert-based labelling with automated clustering.
KnAC can serve as an augmentation of an arbitrary clustering algorithm, making the approach robust and model-agnostic.
arXiv Detail & Related papers (2021-12-16T10:13:47Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
We propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms.
We show that our attacks are transferable even against supervised algorithms such as SVMs, random forests, and neural networks.
arXiv Detail & Related papers (2020-09-09T18:19:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.