An Introductory Survey to Autoencoder-based Deep Clustering -- Sandboxes for Combining Clustering with Deep Learning
- URL: http://arxiv.org/abs/2504.02087v1
- Date: Wed, 02 Apr 2025 19:46:22 GMT
- Title: An Introductory Survey to Autoencoder-based Deep Clustering -- Sandboxes for Combining Clustering with Deep Learning
- Authors: Collin Leiber, Lukas Miklautz, Claudia Plant, Christian Böhm,
- Abstract summary: This survey provides an introduction to fundamental autoencoder-based deep clustering algorithms.<n>The combination of deep learning with clustering, called Deep Clustering, enables to learn a representation tailored to specific clustering tasks.
- Score: 15.388894407006852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoencoders offer a general way of learning low-dimensional, non-linear representations from data without labels. This is achieved without making any particular assumptions about the data type or other domain knowledge. The generality and domain agnosticism in combination with their simplicity make autoencoders a perfect sandbox for researching and developing novel (deep) clustering algorithms. Clustering methods group data based on similarity, a task that benefits from the lower-dimensional representation learned by an autoencoder, mitigating the curse of dimensionality. Specifically, the combination of deep learning with clustering, called Deep Clustering, enables to learn a representation tailored to specific clustering tasks, leading to high-quality results. This survey provides an introduction to fundamental autoencoder-based deep clustering algorithms that serve as building blocks for many modern approaches.
Related papers
- Autoencoded UMAP-Enhanced Clustering for Unsupervised Learning [49.1574468325115]
We propose a novel approach to unsupervised learning by constructing a non-linear embedding of the data into a low-dimensional space followed by any conventional clustering algorithm.
The embedding promotes clusterability of the data and is comprised of two mappings: the encoder of an autoencoder neural network and the output of UMAP algorithm.
When applied to MNIST data, AUEC significantly outperforms the state-of-the-art techniques in terms of clustering accuracy.
arXiv Detail & Related papers (2025-01-13T22:30:38Z) - Snapshot Spectral Clustering -- a costless approach to deep clustering
ensembles generation [0.0]
This paper proposes a novel deep clustering ensemble method - Snapshot Spectral Clustering.
It is designed to maximize the gain from combining multiple data views while minimizing the computational costs of creating the ensemble.
arXiv Detail & Related papers (2023-07-17T16:01:22Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - Seeking the Truth Beyond the Data. An Unsupervised Machine Learning
Approach [0.0]
Clustering is an unsupervised machine learning methodology where unlabeled elements/objects are grouped together.
This article provides a deep description of the most widely used clustering methodologies.
It emphasizes the comparison of these algorithms' clustering efficiency based on 3 datasets.
arXiv Detail & Related papers (2022-07-14T14:22:36Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Mixture Model Auto-Encoders: Deep Clustering through Dictionary Learning [72.9458277424712]
Mixture Model Auto-Encoders (MixMate) is a novel architecture that clusters data by performing inference on a generative model.
We show that MixMate achieves competitive performance compared to state-of-the-art deep clustering algorithms.
arXiv Detail & Related papers (2021-10-10T02:30:31Z) - Decorrelating Adversarial Nets for Clustering Mobile Network Data [0.7034976835586089]
A subset of deep learning, deep clustering could be a valuable tool for many network automation use-cases.
Most state-of-the-art clustering algorithms target image datasets, which makes them hard to apply to mobile network data.
We propose a new algorithm, DANCE, intended to be a reliable deep clustering method which also performs well when applied to network automation use-cases.
arXiv Detail & Related papers (2021-03-11T15:26:26Z) - DAC: Deep Autoencoder-based Clustering, a General Deep Learning
Framework of Representation Learning [0.0]
We propose DAC, Deep Autoencoder-based Clustering, a data-driven framework to learn clustering representations using deep neuron networks.
Experiment results show that our approach could effectively boost performance of the KMeans clustering algorithm on a variety of datasets.
arXiv Detail & Related papers (2021-02-15T11:31:00Z) - Joint Optimization of an Autoencoder for Clustering and Embedding [22.16059261437617]
We present an alternative where the autoencoder and the clustering are learned simultaneously.
That simple neural network, referred to as the clustering module, can be integrated into a deep autoencoder resulting in a deep clustering model.
arXiv Detail & Related papers (2020-12-07T14:38:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.