論文の概要: How to Learn when Data Reacts to Your Model: Performative Gradient
Descent
- arxiv url: http://arxiv.org/abs/2102.07698v1
- Date: Mon, 15 Feb 2021 17:49:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 11:07:19.871096
- Title: How to Learn when Data Reacts to Your Model: Performative Gradient
Descent
- Title(参考訳): モデルにデータが反応するときの学習方法: 実行的勾配降下
- Authors: Zachary Izzo, Lexing Ying, James Zou
- Abstract要約: 性能的に最適な点に収束する最初のアルゴリズムであるPerfGD(Performative gradient descend)を紹介します。
PerfGDは、モデルの変更がデータ分布にどのように影響するかを明示的にキャプチャし、使いやすいです。
- 参考スコア(独自算出の注目度): 10.074466859579571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performative distribution shift captures the setting where the choice of
which ML model is deployed changes the data distribution. For example, a bank
which uses the number of open credit lines to determine a customer's risk of
default on a loan may induce customers to open more credit lines in order to
improve their chances of being approved. Because of the interactions between
the model and data distribution, finding the optimal model parameters is
challenging. Works in this area have focused on finding stable points, which
can be far from optimal. Here we introduce performative gradient descent
(PerfGD), which is the first algorithm which provably converges to the
performatively optimal point. PerfGD explicitly captures how changes in the
model affects the data distribution and is simple to use. We support our
findings with theory and experiments.
- Abstract(参考訳): performanceative distribution shiftは、どのmlモデルがデプロイされるかの選択がデータ分布を変更する設定をキャプチャする。
例えば、ローンで顧客のデフォルトリスクを決定するためにオープンクレジットラインの数を使用する銀行は、顧客が承認される可能性を高めるためにより多くのクレジットラインを開くように誘導する可能性があります。
モデルとデータ分布の相互作用のために、最適なモデルパラメータを見つけることは困難です。
この領域の研究は安定点の発見に焦点を合わせており、最適とはほど遠い。
今回紹介するPerformative gradient descend(PerfGD)は、パフォーマンス的に最適な点に収束する最初のアルゴリズムです。
PerfGDは、モデルの変更がデータ分布にどのように影響するかを明示的にキャプチャし、使いやすいです。
我々は理論と実験で発見を支持している。
関連論文リスト
- Performative Federated Learning: A Solution to Model-Dependent and
Heterogeneous Distribution Shifts [24.196279060605402]
複数のクライアントとサーバからなる連合学習(FL)システムについて検討する。
クライアントのデータが静的であると仮定する従来のFLフレームワークとは異なり、クライアントのデータ分散がデプロイされた決定モデルによって再生成されるシナリオを考察する。
論文 参考訳(メタデータ) (2023-05-08T23:29:24Z) - FedHB: Hierarchical Bayesian Federated Learning [11.936836827864095]
フェデレートラーニング(FL)に対する新しい階層的ベイズ的アプローチを提案する。
本モデルは階層ベイズモデルを用いてクライアントの局所データの生成過程を合理的に記述する。
ブロック座標FLアルゴリズムは、O(sqrtt)$の速度で目的の最適値に収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T18:21:41Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - On Calibrating Diffusion Probabilistic Models [100.94009243541912]
拡散確率モデル(DPM)は様々な生成タスクにおいて有望な結果を得た。
そこで本研究では,任意の事前学習DPMを校正する簡単な方法を提案する。
キャリブレーション法は1回だけ行い, 得られたモデルをサンプリングに繰り返し使用することができる。
論文 参考訳(メタデータ) (2023-02-21T14:14:40Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
本稿では, モデルが生成したデータ上での予測が時間とともに一定であることを示す, 両立性特性を強制することを提案する。
CIFAR-10の条件および非条件生成とAFHQとFFHQのベースライン改良について,本研究の新たな訓練目標が得られた。
論文 参考訳(メタデータ) (2023-02-17T18:45:04Z) - Federated Graph-based Sampling with Arbitrary Client Availability [34.95352685954059]
本稿では,FedGS(Federated Graph-based Smpling)というフレームワークを提案する。
実験結果から,FedGSが公正なクライアントサンプリング方式を実現し,任意のクライアントアベイラビリティの下でモデル性能を向上させるという利点が確認できた。
論文 参考訳(メタデータ) (2022-11-25T09:38:20Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - How to Learn when Data Gradually Reacts to Your Model [10.074466859579571]
我々は,これらの効果が存在する場合でも,性能損失を最小限に抑えるための新しいアルゴリズム Stateful Performative Gradient Descent (Stateful PerfGD) を提案する。
実験の結果, Stateful PerfGD は従来の最先端手法よりもかなり優れていたことが確認された。
論文 参考訳(メタデータ) (2021-12-13T22:05:26Z) - Neural Pseudo-Label Optimism for the Bank Loan Problem [78.66533961716728]
本研究では,Emphbank 融資問題に最もよく表される分類問題について検討する。
線形モデルの場合、この問題はモデル予測に直接最適化を加えることで解決できる。
Pseudo-Label Optimism (PLOT)は,この設定をディープニューラルネットワークに適用するための概念的かつ計算学的にシンプルな手法である。
論文 参考訳(メタデータ) (2021-12-03T22:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。