論文の概要: How to Learn when Data Reacts to Your Model: Performative Gradient
Descent
- arxiv url: http://arxiv.org/abs/2102.07698v2
- Date: Tue, 16 Feb 2021 16:07:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 19:57:06.245968
- Title: How to Learn when Data Reacts to Your Model: Performative Gradient
Descent
- Title(参考訳): モデルにデータが反応するときの学習方法: 実行的勾配降下
- Authors: Zachary Izzo, Lexing Ying, James Zou
- Abstract要約: 性能的に最適な点に収束する最初のアルゴリズムであるPerfGD(Performative gradient descend)を紹介します。
PerfGDは、モデルの変更がデータ分布にどのように影響するかを明示的にキャプチャし、使いやすいです。
- 参考スコア(独自算出の注目度): 10.074466859579571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performative distribution shift captures the setting where the choice of
which ML model is deployed changes the data distribution. For example, a bank
which uses the number of open credit lines to determine a customer's risk of
default on a loan may induce customers to open more credit lines in order to
improve their chances of being approved. Because of the interactions between
the model and data distribution, finding the optimal model parameters is
challenging. Works in this area have focused on finding stable points, which
can be far from optimal. Here we introduce performative gradient descent
(PerfGD), which is the first algorithm which provably converges to the
performatively optimal point. PerfGD explicitly captures how changes in the
model affects the data distribution and is simple to use. We support our
findings with theory and experiments.
- Abstract(参考訳): performanceative distribution shiftは、どのmlモデルがデプロイされるかの選択がデータ分布を変更する設定をキャプチャする。
例えば、ローンで顧客のデフォルトリスクを決定するためにオープンクレジットラインの数を使用する銀行は、顧客が承認される可能性を高めるためにより多くのクレジットラインを開くように誘導する可能性があります。
モデルとデータ分布の相互作用のために、最適なモデルパラメータを見つけることは困難です。
この領域の研究は安定点の発見に焦点を合わせており、最適とはほど遠い。
今回紹介するPerformative gradient descend(PerfGD)は、パフォーマンス的に最適な点に収束する最初のアルゴリズムです。
PerfGDは、モデルの変更がデータ分布にどのように影響するかを明示的にキャプチャし、使いやすいです。
我々は理論と実験で発見を支持している。
関連論文リスト
- Optimal Classification under Performative Distribution Shift [13.508249764979075]
本稿では,動作効果をプッシュフォワード尺度としてモデル化した新しい視点を提案する。
我々は、新しい仮定のセットの下で、パフォーマンスリスクの凸性を証明する。
また, 性能リスクの最小化を min-max 変動問題として再定義することにより, 逆向きの頑健な分類との関係を確立する。
論文 参考訳(メタデータ) (2024-11-04T12:20:13Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
任意の因果モデルと異種データに対応する新しいFCD法を提案する。
これらのアプローチには、データのプライバシを保護するために、生データのプロキシとして要約統計を構築することが含まれる。
提案手法の有効性を示すために, 合成および実データを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-02-20T18:53:53Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
フェデレートラーニング(FL)は、ローカルデータを送信することなく、複数のクライアント間で共有モデルを協調的にトレーニングすることを目的としている。
本稿では,ロジットの校正により局所モデル間の最適化バイアスを補正するFedBalanceを提案する。
提案手法は最先端手法に比べて平均精度が13%高い。
論文 参考訳(メタデータ) (2023-11-14T14:37:33Z) - Performative Federated Learning: A Solution to Model-Dependent and
Heterogeneous Distribution Shifts [24.196279060605402]
複数のクライアントとサーバからなる連合学習(FL)システムについて検討する。
クライアントのデータが静的であると仮定する従来のFLフレームワークとは異なり、クライアントのデータ分散がデプロイされた決定モデルによって再生成されるシナリオを考察する。
論文 参考訳(メタデータ) (2023-05-08T23:29:24Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
本稿では, モデルが生成したデータ上での予測が時間とともに一定であることを示す, 両立性特性を強制することを提案する。
CIFAR-10の条件および非条件生成とAFHQとFFHQのベースライン改良について,本研究の新たな訓練目標が得られた。
論文 参考訳(メタデータ) (2023-02-17T18:45:04Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - How to Learn when Data Gradually Reacts to Your Model [10.074466859579571]
我々は,これらの効果が存在する場合でも,性能損失を最小限に抑えるための新しいアルゴリズム Stateful Performative Gradient Descent (Stateful PerfGD) を提案する。
実験の結果, Stateful PerfGD は従来の最先端手法よりもかなり優れていたことが確認された。
論文 参考訳(メタデータ) (2021-12-13T22:05:26Z) - Neural Pseudo-Label Optimism for the Bank Loan Problem [78.66533961716728]
本研究では,Emphbank 融資問題に最もよく表される分類問題について検討する。
線形モデルの場合、この問題はモデル予測に直接最適化を加えることで解決できる。
Pseudo-Label Optimism (PLOT)は,この設定をディープニューラルネットワークに適用するための概念的かつ計算学的にシンプルな手法である。
論文 参考訳(メタデータ) (2021-12-03T22:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。