Certified Robustness to Programmable Transformations in LSTMs
- URL: http://arxiv.org/abs/2102.07818v1
- Date: Mon, 15 Feb 2021 19:54:59 GMT
- Title: Certified Robustness to Programmable Transformations in LSTMs
- Authors: Yuhao Zhang, Aws Albarghouthi, Loris D'Antoni
- Abstract summary: Deep neural networks for natural language processing are fragile in the face of adversarial examples.
We present an approach to certifying LSTMs of extensions LSTMs that can be efficiently certified.
- Score: 14.587069421684157
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep neural networks for natural language processing are fragile in the face
of adversarial examples--small input perturbations, like synonym substitution
or word duplication, which cause a neural network to change its prediction. We
present an approach to certifying the robustness of LSTMs (and extensions of
LSTMs) and training models that can be efficiently certified. Our approach can
certify robustness to intractably large perturbation spaces defined
programmatically in a language of string transformations.
The key insight of our approach is an application of abstract interpretation
that exploits recursive LSTM structure to incrementally propagate symbolic sets
of inputs, compactly representing a large perturbation space. Our evaluation
shows that (1) our approach can train models that are more robust to
combinations of string transformations than those produced using existing
techniques; (2) our approach can show high certification accuracy of the
resulting models.
Related papers
- DeepDFA: Automata Learning through Neural Probabilistic Relaxations [2.3326951882644553]
We introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces.
Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers interpretability post-training, alongside reduced complexity and enhanced training efficiency.
arXiv Detail & Related papers (2024-08-16T09:30:36Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
Conceptually, LOCCO can be viewed as a form of self-learning where the semantic being trained is used to generate annotations for unlabeled text.
As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model.
arXiv Detail & Related papers (2023-05-31T16:47:20Z) - A Cognitive Study on Semantic Similarity Analysis of Large Corpora: A
Transformer-based Approach [0.0]
We perform semantic similarity analysis and modeling on the U.S. Patent Phrase to Phrase Matching dataset using both traditional and transformer-based techniques.
The experimental results demonstrate our methodology's enhanced performance compared to traditional techniques, with an average Pearson correlation score of 0.79.
arXiv Detail & Related papers (2022-07-24T11:06:56Z) - GSmooth: Certified Robustness against Semantic Transformations via
Generalized Randomized Smoothing [40.38555458216436]
We propose a unified theoretical framework for certifying robustness against general semantic transformations.
Under the GSmooth framework, we present a scalable algorithm that uses a surrogate image-to-image network to approximate the complex transformation.
arXiv Detail & Related papers (2022-06-09T07:12:17Z) - SML: a new Semantic Embedding Alignment Transformer for efficient
cross-lingual Natural Language Inference [71.57324258813674]
The ability of Transformers to perform with precision a variety of tasks such as question answering, Natural Language Inference (NLI) or summarising, have enable them to be ranked as one of the best paradigms to address this kind of tasks at present.
NLI is one of the best scenarios to test these architectures, due to the knowledge required to understand complex sentences and established a relation between a hypothesis and a premise.
In this paper, we propose a new architecture, siamese multilingual transformer, to efficiently align multilingual embeddings for Natural Language Inference.
arXiv Detail & Related papers (2021-03-17T13:23:53Z) - Pretraining Techniques for Sequence-to-Sequence Voice Conversion [57.65753150356411]
Sequence-to-sequence (seq2seq) voice conversion (VC) models are attractive owing to their ability to convert prosody.
We propose to transfer knowledge from other speech processing tasks where large-scale corpora are easily available, typically text-to-speech (TTS) and automatic speech recognition (ASR)
We argue that VC models with such pretrained ASR or TTS model parameters can generate effective hidden representations for high-fidelity, highly intelligible converted speech.
arXiv Detail & Related papers (2020-08-07T11:02:07Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.