ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
- URL: http://arxiv.org/abs/2411.12589v2
- Date: Sat, 22 Mar 2025 19:54:49 GMT
- Title: ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
- Authors: Hesam Hosseini, Ghazal Hosseini Mighan, Amirabbas Afzali, Sajjad Amini, Amir Houmansadr,
- Abstract summary: We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them.<n>We propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model.<n>We validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization.
- Score: 14.84547724351634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
Related papers
- Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.
CAP intervenes in model activations through constituent-based pooling at various model levels.
Our findings highlight fundamental limitations in current transformer architectures regarding compositional semantics processing and model interpretability.
arXiv Detail & Related papers (2024-10-16T18:10:50Z) - Semantic Equitable Clustering: A Simple and Effective Strategy for Clustering Vision Tokens [57.37893387775829]
We introduce a fast and balanced clustering method, named textbfSemantic textbfEquitable textbfClustering (SEC)
SEC clusters tokens based on their global semantic relevance in an efficient, straightforward manner.
We propose a versatile vision backbone, SECViT, to serve as a vision language connector.
arXiv Detail & Related papers (2024-05-22T04:49:00Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Vision Transformers with Natural Language Semantics [13.535916922328287]
Vision Transformers (ViT) lack essential semantic information, unlike their counterparts in natural language processing (NLP)
We introduce a novel transformer model, Semantic Vision Transformers (sViT), which harnesses semantic information.
SViT effectively harnesses semantic information, creating an inductive bias reminiscent of convolutional neural networks.
arXiv Detail & Related papers (2024-02-27T19:54:42Z) - Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational
AutoEncoders [5.037881619912574]
In this paper, we investigate latent space separation methods for structural syntactic injection in Transformer-based VAEs.
Specifically, we explore how syntactic structures can be leveraged in the encoding stage through the integration of graph-based and sequential models.
Our empirical evaluation, carried out on natural language sentences and mathematical expressions, reveals that the proposed end-to-end VAE architecture can result in a better overall organisation of the latent space.
arXiv Detail & Related papers (2023-11-14T22:47:23Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
We develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP)
We leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors.
We build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data.
arXiv Detail & Related papers (2023-05-04T13:16:15Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision [54.16430358203348]
We propose a simple but effective slimmable semantic segmentation (SlimSeg) method, which can be executed at different capacities during inference.
We show that our proposed SlimSeg with various mainstream networks can produce flexible models that provide dynamic adjustment of computational cost and better performance.
arXiv Detail & Related papers (2022-07-13T14:41:05Z) - Transferring Semantic Knowledge Into Language Encoders [6.85316573653194]
We introduce semantic form mid-tuning, an approach for transferring semantic knowledge from semantic meaning representations into language encoders.
We show that this alignment can be learned implicitly via classification or directly via triplet loss.
Our method yields language encoders that demonstrate improved predictive performance across inference, reading comprehension, textual similarity, and other semantic tasks.
arXiv Detail & Related papers (2021-10-14T14:11:12Z) - Bayesian Transformer Language Models for Speech Recognition [59.235405107295655]
State-of-the-art neural language models (LMs) represented by Transformers are highly complex.
This paper proposes a full Bayesian learning framework for Transformer LM estimation.
arXiv Detail & Related papers (2021-02-09T10:55:27Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
We tackle the task of unsupervised disentanglement between semantics and structure in neural language representations.
To this end, we automatically generate groups of sentences which are structurally similar but semantically different.
We demonstrate that our transformation clusters vectors in space by structural properties, rather than by lexical semantics.
arXiv Detail & Related papers (2020-10-11T15:13:18Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.