論文の概要: Unified Shapley Framework to Explain Prediction Drift
- arxiv url: http://arxiv.org/abs/2102.07862v1
- Date: Mon, 15 Feb 2021 21:58:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 21:14:30.840368
- Title: Unified Shapley Framework to Explain Prediction Drift
- Title(参考訳): Unified Shapley Framework - 予測ドリフトを説明する
- Authors: Aalok Shanbhag, Avijit Ghosh, Josh Rubin
- Abstract要約: この問題に対処するための公理的に正当化された方法として,GroupShapley と GroupIG を提案する。
そのために、Shapley値に基づいた現在の機能/データの重要度を、分散比較の本質的に問題として再設定します。
分布差の特定の望ましい特性を公理化し、それらを選択することの意味を研究する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictions are the currency of a machine learning model, and to understand
the model's behavior over segments of a dataset, or over time, is an important
problem in machine learning research and practice. There currently is no
systematic framework to understand this drift in prediction distributions over
time or between two semantically meaningful slices of data, in terms of the
input features and points. We propose GroupShapley and GroupIG (Integrated
Gradients), as axiomatically justified methods to tackle this problem. In doing
so, we re-frame all current feature/data importance measures based on the
Shapley value as essentially problems of distributional comparisons, and unify
them under a common umbrella. We axiomatize certain desirable properties of
distributional difference, and study the implications of choosing them
empirically.
- Abstract(参考訳): 予測は機械学習モデルの通貨であり、データセットのセグメントや時間の経過とともにモデルの振る舞いを理解することは、機械学習の研究と実践において重要な問題である。
現在、入力特徴と点の観点から、時間的あるいは意味論的に意味のある2つのデータスライス間の予測分布において、この流れを理解するための体系的なフレームワークは存在しない。
我々は,この問題に対処するための公理的正当化手法として,グループハプリーとグループイグ(統合勾配)を提案する。
そのために私たちは,現在の機能/データ重要度指標をすべてシャプリー値に基づいて再編成し,分散比較の本質的に問題として,共通の傘の下でそれらを統一します。
分布差の特定の望ましい性質を公理化し,経験的選択の意義について検討する。
関連論文リスト
- A Critical Assessment of Interpretable and Explainable Machine Learning for Intrusion Detection [0.0]
本稿では,過度に複雑で不透明なMLモデル,不均衡なデータと相関した特徴,異なる説明法における不整合な影響特徴,そして説明の不可能な有用性について検討する。
具体的には、Deep Neural Networksのような複雑な不透明モデルを避け、代わりにDecision Treesのような解釈可能なMLモデルを使用することを推奨する。
機能ベースのモデル説明は、多くの場合、異なる設定で矛盾している。
論文 参考訳(メタデータ) (2024-07-04T15:35:42Z) - Generating collective counterfactual explanations in score-based
classification via mathematical optimization [4.281723404774889]
インスタンスの反実的な説明は、このインスタンスを最小限に修正して、摂動インスタンスを望ましいクラスに分類する方法を示している。
カウンターファクト・アナリティクスの文献の多くは、単一インスタンスの単一カウントファクト・セッティングに焦点を当てている。
新規な数学的最適化モデルにより、興味ある群における各インスタンスに対する対実的説明を提供する。
論文 参考訳(メタデータ) (2023-10-19T15:18:42Z) - Grouping Shapley Value Feature Importances of Random Forests for
explainable Yield Prediction [0.8543936047647136]
本稿では,特徴群に対して直接計算されたShapley値の概念を説明し,木構造上で効率的に計算するアルゴリズムを提案する。
我々は、グローバルな理解のために多くのローカルな説明を組み合わせてSwarmプロットを設計するための青写真を提供する。
論文 参考訳(メタデータ) (2023-04-14T13:03:33Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Partial Order in Chaos: Consensus on Feature Attributions in the
Rashomon Set [50.67431815647126]
ポストホックなグローバル/ローカルな特徴属性法は、機械学習モデルを理解するために徐々に採用されている。
この手法により局所的・言語的特徴の半順序が生じることを示す。
これらの部分的な順序に現れる特徴間の関係は、既存のアプローチによって提供されたランクにも当てはまることを示す。
論文 参考訳(メタデータ) (2021-10-26T02:53:14Z) - Shapley variable importance clouds for interpretable machine learning [2.830197032154301]
本報告では,最終モデルのSHAP解析におけるバイアス評価を回避するため,優れたモデルにまたがる情報をプールするShapley変数重要クラウドを提案する。
刑事司法データと電子カルテデータを用いたドン・アンド・ルーディン法とを比較検討した。
論文 参考訳(メタデータ) (2021-10-06T03:41:04Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
多くの機械学習アプリケーションは、2つの競合する目標を達成する表現を学習する。
ミニマックスゲーム理論の定式化は、精度と不変性の基本的なトレードオフを表す。
分類と回帰の双方において,この一般的かつ重要な問題を情報論的に解析する。
論文 参考訳(メタデータ) (2020-12-19T15:24:04Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z) - Explaining predictive models with mixed features using Shapley values
and conditional inference trees [1.8065361710947976]
シェープな値は、あらゆる種類の機械学習モデルからの予測を説明するためのサウンドメソッドとして際立っている。
本研究では,条件付き推論木を用いた特徴の依存構造をモデル化し,混合依存的特徴を説明する手法を提案する。
論文 参考訳(メタデータ) (2020-07-02T11:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。