論文の概要: TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2102.08005v1
- Date: Tue, 16 Feb 2021 08:09:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 15:20:41.730142
- Title: TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
- Title(参考訳): transfuse: 医療用画像分割のためのトランスフォーマーとcnn
- Authors: Yundong Zhang, Huiye Liu, and Qiang Hu
- Abstract要約: 低レベルディテールのローカリゼーション能力を失うことなく、グローバルコンテキストのモデリングにおける効率性を改善する問題を検討する。
TransFuse、並列スタイルでトランスフォーマーとCNNを組み合わせた新しい2ブランチアーキテクチャが提案されています。
TransFuseでは、グローバル依存性と低レベルの空間詳細の両方を、はるかに浅い方法で効率的にキャプチャできます。
- 参考スコア(独自算出の注目度): 9.266588373318688
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: U-Net based convolutional neural networks with deep feature representation
and skip-connections have significantly boosted the performance of medical
image segmentation. In this paper, we study the more challenging problem of
improving efficiency in modeling global contexts without losing localization
ability for low-level details. TransFuse, a novel two-branch architecture is
proposed, which combines Transformers and CNNs in a parallel style. With
TransFuse, both global dependency and low-level spatial details can be
efficiently captured in a much shallower manner. Besides, a novel fusion
technique - BiFusion module is proposed to fuse the multi-level features from
each branch. TransFuse achieves the newest state-of-the-arts on polyp
segmentation task, with 20\% fewer parameters and the fastest inference speed
at about 98.7 FPS.
- Abstract(参考訳): 深い特徴表現とスキップ接続を備えたu-netベースの畳み込みニューラルネットワークは、医療画像のセグメンテーション性能を著しく向上させた。
本稿では,低レベル詳細の局所化能力を失うことなく,グローバルコンテキストのモデリングにおける効率向上の課題について検討する。
TransFuse、並列スタイルでトランスフォーマーとCNNを組み合わせた新しい2ブランチアーキテクチャが提案されています。
TransFuseでは、グローバル依存性と低レベルの空間詳細の両方を、はるかに浅い方法で効率的にキャプチャできます。
さらに、各ブランチからマルチレベル機能を融合するために、新しい融合技術であるBiFusionモジュールが提案されている。
TransFuseは、約98.7 FPSで20\%のパラメータと最速の推論速度で、最新のPolypセグメンテーションタスクを実現します。
関連論文リスト
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
医用画像領域で高解像度画像が好ましいのは、基礎となる方法の診断能力を大幅に向上させるためである。
医用画像セグメンテーションのための既存のディープラーニング技術のほとんどは、空間次元が小さい入力画像に最適化されており、高解像度画像では不十分である。
我々はTransResNetという並列処理アーキテクチャを提案し、TransformerとCNNを並列的に組み合わせ、マルチ解像度画像から特徴を独立して抽出する。
論文 参考訳(メタデータ) (2024-10-01T18:22:34Z) - TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation [5.280523424712006]
U-Netは現在、医療画像セグメンテーションの最も広く使われているアーキテクチャである。
我々は、メモリ使用量と計算負荷を減らすためにkanを改善した。
このアプローチは、非線形関係をキャプチャするモデルの能力を高める。
論文 参考訳(メタデータ) (2024-09-23T02:52:49Z) - CTRL-F: Pairing Convolution with Transformer for Image Classification via Multi-Level Feature Cross-Attention and Representation Learning Fusion [0.0]
コンボリューションとトランスフォーマーを組み合わせた,軽量なハイブリッドネットワークを提案する。
畳み込み経路から取得した局所応答とMFCAモジュールから取得したグローバル応答とを融合する。
実験により、我々の変種は、大規模データや低データレギュレーションでスクラッチからトレーニングしたとしても、最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-07-09T08:47:13Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
本稿では,リアルタイムセマンティックセグメンテーションのための効率的なデュアルレゾリューション変換器RTFormerを提案する。
CNNベースのモデルよりもパフォーマンスと効率のトレードオフが優れている。
主要なベンチマーク実験では,提案したRTFormerの有効性を示す。
論文 参考訳(メタデータ) (2022-10-13T16:03:53Z) - HiFormer: Hierarchical Multi-scale Representations Using Transformers
for Medical Image Segmentation [3.478921293603811]
HiFormerは、医用画像セグメンテーションのためのCNNとトランスフォーマーを効率的にブリッジする新しい方法である。
グローバルな特徴とローカルな特徴の微細融合を確保するため,エンコーダ・デコーダ構造のスキップ接続におけるDouble-Level Fusion (DLF)モジュールを提案する。
論文 参考訳(メタデータ) (2022-07-18T11:30:06Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
現在の物体検出器は、通常マルチレベル特徴融合(MFF)のための特徴ピラミッド(FP)モジュールを持つ。
我々は,既存のFPがより優れたMFF結果を提供するのに役立つ,新しい,効率的なコンテキストモデリング機構を提案する。
特に,包括的文脈を2種類の表現に分解・凝縮して高効率化を図っている。
論文 参考訳(メタデータ) (2022-07-14T01:45:03Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
畳み込みニューラルネットワークとディープトランスを組み合わせた新しいセグメンテーションモデルを提案する。
提案手法は,最先端技術と比較してセグメント化精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-20T12:03:54Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。