Just Noticeable Difference for Machine Perception and Generation of
Regularized Adversarial Images with Minimal Perturbation
- URL: http://arxiv.org/abs/2102.08079v1
- Date: Tue, 16 Feb 2021 11:01:55 GMT
- Title: Just Noticeable Difference for Machine Perception and Generation of
Regularized Adversarial Images with Minimal Perturbation
- Authors: Adil Kaan Akan, Emre Akbas, Fatos T. Yarman Vural
- Abstract summary: We introduce a measure for machine perception inspired by the concept of Just Noticeable Difference (JND) of human perception.
We suggest an adversarial image generation algorithm, which iteratively distorts an image by an additive noise until the machine learning model detects the change in the image by outputting a false label.
We evaluate the adversarial images generated by our algorithm both qualitatively and quantitatively on CIFAR10, ImageNet, and MS COCO datasets.
- Score: 8.920717493647121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we introduce a measure for machine perception, inspired by the
concept of Just Noticeable Difference (JND) of human perception. Based on this
measure, we suggest an adversarial image generation algorithm, which
iteratively distorts an image by an additive noise until the machine learning
model detects the change in the image by outputting a false label. The amount
of noise added to the original image is defined as the gradient of the cost
function of the machine learning model. This cost function explicitly minimizes
the amount of perturbation applied on the input image and it is regularized by
bounded range and total variation functions to assure perceptual similarity of
the adversarial image to the input. We evaluate the adversarial images
generated by our algorithm both qualitatively and quantitatively on CIFAR10,
ImageNet, and MS COCO datasets. Our experiments on image classification and
object detection tasks show that adversarial images generated by our method are
both more successful in deceiving the recognition/detection model and less
perturbed compared to the images generated by the state-of-the-art methods.
Related papers
- ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) aims to develop methods to measure image quality in alignment with human perception without the need for a high-quality reference image.
We propose a self-supervised approach named ARNIQA for modeling the image distortion manifold to obtain quality representations in an intrinsic manner.
arXiv Detail & Related papers (2023-10-20T17:22:25Z) - CoReFace: Sample-Guided Contrastive Regularization for Deep Face
Recognition [3.1677775852317085]
We propose Contrastive Regularization for Face recognition (CoReFace) to apply image-level regularization in feature representation learning.
Specifically, we employ sample-guided contrastive learning to regularize the training with the image-image relationship directly.
To integrate contrastive learning into face recognition, we augment embeddings instead of images to avoid the image quality degradation.
arXiv Detail & Related papers (2023-04-23T14:33:24Z) - Image Quality Assessment: Learning to Rank Image Distortion Level [0.0]
We learn to compare the image quality of two registered images, with respect to a chosen distortion.
Our method takes advantage of the fact that at times, simulating image distortion and later evaluating its relative image quality, is easier than assessing its absolute value.
arXiv Detail & Related papers (2022-08-04T18:33:33Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
In this work, we incorporate this binary information of "existence of noise" as treatment into image classification tasks to improve prediction accuracy.
Motivated from causal variational inference, we propose a transformer-based architecture, that uses a latent generative model to estimate robust feature representations for noise image classification.
We also create new noisy image datasets incorporating a wide range of noise factors for performance benchmarking.
arXiv Detail & Related papers (2022-03-29T13:07:53Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Context-Aware Image Denoising with Auto-Threshold Canny Edge Detection
to Suppress Adversarial Perturbation [0.8021197489470756]
This paper presents a novel context-aware image denoising algorithm.
It combines an adaptive image smoothing technique and color reduction techniques to remove perturbation from adversarial images.
Our results show that the proposed approach reduces adversarial perturbation in adversarial attacks and increases the robustness of the deep convolutional neural network models.
arXiv Detail & Related papers (2021-01-14T19:15:28Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z) - Just Noticeable Difference for Machines to Generate Adversarial Images [0.34376560669160383]
The proposed method is based on a popular concept of experimental psychology called, Just Noticeable Difference.
The adversarial images generated in this study looks more natural compared to the output of state of the art adversarial image generators.
arXiv Detail & Related papers (2020-01-29T19:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.