Context-Aware Image Denoising with Auto-Threshold Canny Edge Detection
to Suppress Adversarial Perturbation
- URL: http://arxiv.org/abs/2101.05833v1
- Date: Thu, 14 Jan 2021 19:15:28 GMT
- Title: Context-Aware Image Denoising with Auto-Threshold Canny Edge Detection
to Suppress Adversarial Perturbation
- Authors: Li-Yun Wang, Yeganeh Jalalpour, Wu-chi Feng
- Abstract summary: This paper presents a novel context-aware image denoising algorithm.
It combines an adaptive image smoothing technique and color reduction techniques to remove perturbation from adversarial images.
Our results show that the proposed approach reduces adversarial perturbation in adversarial attacks and increases the robustness of the deep convolutional neural network models.
- Score: 0.8021197489470756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel context-aware image denoising algorithm that
combines an adaptive image smoothing technique and color reduction techniques
to remove perturbation from adversarial images. Adaptive image smoothing is
achieved using auto-threshold canny edge detection to produce an accurate edge
map used to produce a blurred image that preserves more edge features. The
proposed algorithm then uses color reduction techniques to reconstruct the
image using only a few representative colors. Through this technique, the
algorithm can reduce the effects of adversarial perturbations on images. We
also discuss experimental data on classification accuracy. Our results showed
that the proposed approach reduces adversarial perturbation in adversarial
attacks and increases the robustness of the deep convolutional neural network
models.
Related papers
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Deep Unfolding for Iterative Stripe Noise Removal [4.756256077972335]
Non-uniform photoelectric response of infrared imaging systems results in fixed-pattern stripe noise being superimposed on infrared images.
Existing image destriping methods struggle to concurrently remove all stripe noise artifacts, preserve image details and structures, and balance real-time performance.
We propose a novel algorithm for destriping degraded images, which takes advantage of neighbouring column signal correlation to remove independent column stripe noise.
arXiv Detail & Related papers (2022-09-27T02:53:03Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - A Novel Image Denoising Algorithm Using Concepts of Quantum Many-Body
Theory [40.29747436872773]
This paper presents a novel image denoising algorithm inspired by the quantum many-body theory.
Based on patch analysis, the similarity measures in a local image neighborhood are formalized through a term akin to interaction in quantum mechanics.
We show the ability of our approach to deal with practical images denoising problems such as medical ultrasound image despeckling applications.
arXiv Detail & Related papers (2021-12-16T23:34:37Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Adversarial examples by perturbing high-level features in intermediate
decoder layers [0.0]
Instead of perturbing pixels, we use an encoder-decoder representation of the input image and perturb intermediate layers in the decoder.
Our perturbation possesses semantic meaning, such as a longer beak or green tints.
We show that our method modifies key features such as edges and that defence techniques based on adversarial training are vulnerable to our attacks.
arXiv Detail & Related papers (2021-10-14T07:08:15Z) - Synergy Between Semantic Segmentation and Image Denoising via Alternate
Boosting [102.19116213923614]
We propose a boosting network to perform denoising and segmentation alternately.
We observe that not only denoising helps combat the drop of segmentation accuracy due to noise, but also pixel-wise semantic information boosts the capability of denoising.
Experimental results show that the denoised image quality is improved substantially and the segmentation accuracy is improved to close to that of clean images.
arXiv Detail & Related papers (2021-02-24T06:48:45Z) - Just Noticeable Difference for Machine Perception and Generation of
Regularized Adversarial Images with Minimal Perturbation [8.920717493647121]
We introduce a measure for machine perception inspired by the concept of Just Noticeable Difference (JND) of human perception.
We suggest an adversarial image generation algorithm, which iteratively distorts an image by an additive noise until the machine learning model detects the change in the image by outputting a false label.
We evaluate the adversarial images generated by our algorithm both qualitatively and quantitatively on CIFAR10, ImageNet, and MS COCO datasets.
arXiv Detail & Related papers (2021-02-16T11:01:55Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Spatial-Adaptive Network for Single Image Denoising [14.643663950015334]
We propose a novel spatial-adaptive denoising network (SADNet) for efficient single image blind noise removal.
Our method can surpass the state-of-the-art denoising methods both quantitatively and visually.
arXiv Detail & Related papers (2020-01-28T12:24:17Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.