論文の概要: Active Privacy-utility Trade-off Against a Hypothesis Testing Adversary
- arxiv url: http://arxiv.org/abs/2102.08308v1
- Date: Tue, 16 Feb 2021 17:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 15:09:07.746810
- Title: Active Privacy-utility Trade-off Against a Hypothesis Testing Adversary
- Title(参考訳): 仮説テストの敵対者に対するアクティブプライバシユーティリティトレードオフ
- Authors: Ecenaz Erdemir and Pier Luigi Dragotti and Deniz Gunduz
- Abstract要約: 利用者は、サービス見返りにいくつかの個人情報を含むデータを公開する。
ユーザーの個人情報を、秘密変数と呼ばれる2つの相関したランダム変数としてモデル化します。
本研究では,有用変数を正しく検出する確率と,有用変数と解放されたデータとの間の相互情報(MI)について考察する。
- 参考スコア(独自算出の注目度): 34.6578234382717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a user releasing her data containing some personal information in
return of a service. We model user's personal information as two correlated
random variables, one of them, called the secret variable, is to be kept
private, while the other, called the useful variable, is to be disclosed for
utility. We consider active sequential data release, where at each time step
the user chooses from among a finite set of release mechanisms, each revealing
some information about the user's personal information, i.e., the true
hypotheses, albeit with different statistics. The user manages data release in
an online fashion such that maximum amount of information is revealed about the
latent useful variable, while his confidence for the sensitive variable is kept
below a predefined level. For the utility, we consider both the probability of
correct detection of the useful variable and the mutual information (MI)
between the useful variable and released data. We formulate both problems as a
Markov decision process (MDP), and numerically solve them by advantage
actor-critic (A2C) deep reinforcement learning (RL).
- Abstract(参考訳): 利用者は、サービス見返りにいくつかの個人情報を含むデータを公開する。
我々は,ユーザの個人情報を2つの相関確率変数としてモデル化し,そのうちの1つは秘密変数と呼ばれ,もう1つは有用変数と呼ばれ,実用のために開示される。
アクティブシーケンシャルデータリリース(Active sequence data release)を検討し、各ステップにおいて、ユーザーは有限なリリースメカニズムの中から選択し、それぞれがユーザーの個人情報、すなわち真の仮説に関する情報を異なる統計で明らかにする。
ユーザは、潜在有用な変数について最大情報量を明らかにするようにオンライン形式でデータリリースを管理し、また、センシティブな変数に対する信頼度を予め定義されたレベル以下に保持する。
本研究では,有用変数を正しく検出する確率と,有用変数と解放されたデータとの間の相互情報(MI)について考察する。
両方の問題をマルコフ決定プロセス(MDP)として定式化し、アドバンテージアクタークリティカル(A2C)深層強化学習(RL)により数値的に解く。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Differentially Private Linear Regression with Linked Data [3.9325957466009203]
コンピュータ科学の数学的概念である差分プライバシーは、堅牢なプライバシー保証を提供する上昇するツールである。
最近の研究は、個々の統計および機械学習タスクの微分プライベートバージョンの開発に焦点を当てている。
相関データを用いた線形回帰のための2つの微分プライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-01T21:00:19Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
異なるユーザーは、非常に多くの異なるデータポイントを持っているかもしれない。
すべてのユーザが同じディストリビューションからサンプルを採取していると仮定することはできない。
本研究では,データの分布と量の両方でユーザデータが異なる異質なユーザデータの単純なモデルを提案する。
論文 参考訳(メタデータ) (2023-07-28T23:02:39Z) - Enabling Trade-offs in Privacy and Utility in Genomic Data Beacons and
Summary Statistics [26.99521354120141]
要約データやBeaconの応答とプライバシを明示的にトレードオフするための最適化ベースのアプローチを導入します。
第一に、攻撃者はメンバーシップ推論のクレームを行うために確率比テストを適用する。
第2に、攻撃者は、個人間のスコアの分離に対するデータリリースの影響を考慮に入れたしきい値を使用する。
論文 参考訳(メタデータ) (2023-01-11T19:16:13Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Gacs-Korner Common Information Variational Autoencoder [102.89011295243334]
本稿では,2つの変数間で共有される情報の定量化と分離を可能にする共通情報の概念を提案する。
画像やビデオなどの高次元データでも意味論的に意味のある共通要素や特徴要因を学習できることを実証する。
論文 参考訳(メタデータ) (2022-05-24T17:47:26Z) - Production of Categorical Data Verifying Differential Privacy:
Conception and Applications to Machine Learning [0.0]
差別化プライバシは、プライバシとユーティリティのトレードオフの定量化を可能にする正式な定義である。
ローカルDP(LDP)モデルでは、ユーザはデータをサーバに送信する前に、ローカルにデータをサニタイズすることができる。
いずれの場合も、微分プライベートなMLモデルは、非プライベートなモデルとほぼ同じユーティリティメトリクスを達成できると結論付けました。
論文 参考訳(メタデータ) (2022-04-02T12:50:14Z) - Active Privacy-Utility Trade-off Against Inference in Time-Series Data
Sharing [29.738666406095074]
我々は、誠実だが信頼できるサービスプロバイダ(SP)のサービスに見返りに、個人情報を含むデータを公開しているユーザについて検討する。
両問題を部分的に観測可能なマルコフ決定過程(POMDP)として定式化し,アクター・クリティック(A2C)深部強化学習(DRL)を用いて数値的に解いた。
本研究では,合成データと喫煙活動データセットの両方に対するポリシーのプライバシユーティリティトレードオフ(PUT)を評価し,長い短期記憶(LSTM)ニューラルネットワークでモデル化されたSPのアクティビティ検出精度をテストすることにより,その妥当性を示す。
論文 参考訳(メタデータ) (2022-02-11T18:57:31Z) - A Bayesian Framework for Information-Theoretic Probing [51.98576673620385]
我々は、探索は相互情報を近似するものとみなすべきであると論じる。
これは、表現が元の文とターゲットタスクに関する全く同じ情報をエンコードしているというかなり直感的な結論を導いた。
本稿では,ベイズ的相互情報(Bayesian mutual information)と呼ぶものを測定するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-08T18:08:36Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
本稿では,時系列データとスマートメータ(SM)電力消費測定の文脈における問題点について検討する。
我々は、考慮された設定において、より意味のあるプライバシーの尺度として、指向情報(DI)を導入します。
最悪のシナリオにおけるSMs測定による実世界のデータセットに関する実証的研究は、プライバシとユーティリティの既存のトレードオフを示している。
論文 参考訳(メタデータ) (2020-11-20T13:41:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。