Topological Obstructions to Autoencoding
- URL: http://arxiv.org/abs/2102.08380v1
- Date: Tue, 16 Feb 2021 19:00:00 GMT
- Title: Topological Obstructions to Autoencoding
- Authors: Joshua Batson, C. Grace Haaf, Yonatan Kahn, Daniel A. Roberts
- Abstract summary: We show how the intrinsic and extrinsic topology of the dataset affects the behavior of an autoencoder.
We ground this analysis in the discussion of a mock "bump hunt" in which the autoencoder fails to identify an anomalous "signal"
- Score: 4.2056926734482065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoencoders have been proposed as a powerful tool for model-independent
anomaly detection in high-energy physics. The operating principle is that
events which do not belong to the space of training data will be reconstructed
poorly, thus flagging them as anomalies. We point out that in a variety of
examples of interest, the connection between large reconstruction error and
anomalies is not so clear. In particular, for data sets with nontrivial
topology, there will always be points that erroneously seem anomalous due to
global issues. Conversely, neural networks typically have an inductive bias or
prior to locally interpolate such that undersampled or rare events may be
reconstructed with small error, despite actually being the desired anomalies.
Taken together, these facts are in tension with the simple picture of the
autoencoder as an anomaly detector. Using a series of illustrative
low-dimensional examples, we show explicitly how the intrinsic and extrinsic
topology of the dataset affects the behavior of an autoencoder and how this
topology is manifested in the latent space representation during training. We
ground this analysis in the discussion of a mock "bump hunt" in which the
autoencoder fails to identify an anomalous "signal" for reasons tied to the
intrinsic topology of $n$-particle phase space.
Related papers
- Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Reconstruction Error-based Anomaly Detection with Few Outlying Examples [1.011824113969195]
This work investigates approaches to allow reconstruction error-based architectures to instruct the model to put known anomalies outside of the domain description of the normal data.
Specifically, our strategy exploits a limited number of anomalous examples to increase the contrast between the reconstruction error associated with normal examples and those associated with both known and unknown anomalies.
arXiv Detail & Related papers (2023-05-17T08:20:29Z) - Time-series Anomaly Detection via Contextual Discriminative Contrastive
Learning [0.0]
One-class classification methods are commonly used for anomaly detection tasks.
We propose a novel approach inspired by the loss function of DeepSVDD.
We combine our approach with a deterministic contrastive loss from Neutral AD, a promising self-supervised learning anomaly detection approach.
arXiv Detail & Related papers (2023-04-16T21:36:19Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
Anomaly detection is to identify samples that do not conform to the distribution of the normal data.
In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder.
The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.
arXiv Detail & Related papers (2022-07-03T19:32:00Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data.
We propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation.
arXiv Detail & Related papers (2021-06-09T21:57:41Z) - CSCAD: Correlation Structure-based Collective Anomaly Detection in
Complex System [11.739889613196619]
We propose a correlation structure-based collective anomaly detection model for high-dimensional anomaly detection problem in large systems.
Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples.
An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples.
arXiv Detail & Related papers (2021-05-30T09:28:25Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.