Reconstruction Error-based Anomaly Detection with Few Outlying Examples
- URL: http://arxiv.org/abs/2305.10464v2
- Date: Wed, 5 Jun 2024 09:07:58 GMT
- Title: Reconstruction Error-based Anomaly Detection with Few Outlying Examples
- Authors: Fabrizio Angiulli, Fabio Fassetti, Luca Ferragina,
- Abstract summary: This work investigates approaches to allow reconstruction error-based architectures to instruct the model to put known anomalies outside of the domain description of the normal data.
Specifically, our strategy exploits a limited number of anomalous examples to increase the contrast between the reconstruction error associated with normal examples and those associated with both known and unknown anomalies.
- Score: 1.011824113969195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction error-based neural architectures constitute a classical deep learning approach to anomaly detection which has shown great performances. It consists in training an Autoencoder to reconstruct a set of examples deemed to represent the normality and then to point out as anomalies those data that show a sufficiently large reconstruction error. Unfortunately, these architectures often become able to well reconstruct also the anomalies in the data. This phenomenon is more evident when there are anomalies in the training set. In particular when these anomalies are labeled, a setting called semi-supervised, the best way to train Autoencoders is to ignore anomalies and minimize the reconstruction error on normal data. The goal of this work is to investigate approaches to allow reconstruction error-based architectures to instruct the model to put known anomalies outside of the domain description of the normal data. Specifically, our strategy exploits a limited number of anomalous examples to increase the contrast between the reconstruction error associated with normal examples and those associated with both known and unknown anomalies, thus enhancing anomaly detection performances. The experiments show that this new procedure achieves better performances than the standard Autoencoder approach and the main deep learning techniques for semi-supervised anomaly detection.
Related papers
- Exploiting Autoencoder's Weakness to Generate Pseudo Anomalies [17.342474659784823]
A typical approach to anomaly detection is to train an autoencoder (AE) with normal data only so that it learns the patterns or representations of the normal data.
We propose creating pseudo anomalies from learned adaptive noise by exploiting the weakness of AE, i.e., reconstructing anomalies too well.
arXiv Detail & Related papers (2024-05-09T16:22:24Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Two-stream Decoder Feature Normality Estimating Network for Industrial
Anomaly Detection [4.772323272202286]
We propose a two-stream decoder network (TSDN) to learn both normal and abnormal features.
We also propose a feature normality estimator (FNE) to eliminate abnormal features and prevent high-quality reconstruction of abnormal regions.
arXiv Detail & Related papers (2023-02-20T06:46:09Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Learning Not to Reconstruct Anomalies [14.632592282260363]
Autoencoder (AE) is trained to reconstruct the input with training set consisting only of normal data.
AE is then expected to well reconstruct the normal data while poorly reconstructing the anomalous data.
We propose a novel methodology to train AEs with the objective of reconstructing only normal data, regardless of the input.
arXiv Detail & Related papers (2021-10-19T05:22:38Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Topological Obstructions to Autoencoding [4.2056926734482065]
We show how the intrinsic and extrinsic topology of the dataset affects the behavior of an autoencoder.
We ground this analysis in the discussion of a mock "bump hunt" in which the autoencoder fails to identify an anomalous "signal"
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Reconstruct Anomaly to Normal: Adversarial Learned and Latent
Vector-constrained Autoencoder for Time-series Anomaly Detection [3.727524403726822]
Anomaly detection in time series has been widely researched and has important practical applications.
In recent years, anomaly detection algorithms are mostly based on deep-learning generative models and use the reconstruction error to detect anomalies.
We propose RAN based on the idea of Reconstruct Anomalies to Normal and apply it for unsupervised time series anomaly detection.
arXiv Detail & Related papers (2020-10-14T07:10:55Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.