論文の概要: Label Leakage and Protection in Two-party Split Learning
- arxiv url: http://arxiv.org/abs/2102.08504v1
- Date: Wed, 17 Feb 2021 00:01:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 14:29:03.051626
- Title: Label Leakage and Protection in Two-party Split Learning
- Title(参考訳): 二者分割学習におけるラベル漏洩と保護
- Authors: Oscar Li and Jiankai Sun and Xin Yang and Weihao Gao and Hongyi Zhang
and Junyuan Xie and Virginia Smith and Chong Wang
- Abstract要約: 本稿では,不均衡な二項分類設定でその答えを検討する。
まず,当事者間のコミュニケーション勾配のノルムを用いた単純な手法であるノームアタックが,参加者の接地ラベルをほとんど明らかにできることを示す。
そこで我々は,ラベル検出の最悪のエラーを直接最大化する原理的手法を考案した。
- 参考スコア(独自算出の注目度): 31.55902526103684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In vertical federated learning, two-party split learning has become an
important topic and has found many applications in real business scenarios.
However, how to prevent the participants' ground-truth labels from possible
leakage is not well studied. In this paper, we consider answering this question
in an imbalanced binary classification setting, a common case in online
business applications. We first show that, norm attack, a simple method that
uses the norm of the communicated gradients between the parties, can largely
reveal the ground-truth labels from the participants. We then discuss several
protection techniques to mitigate this issue. Among them, we have designed a
principled approach that directly maximizes the worst-case error of label
detection. This is proved to be more effective in countering norm attack and
beyond. We experimentally demonstrate the competitiveness of our proposed
method compared to several other baselines.
- Abstract(参考訳): 垂直連合学習では、二者分割学習が重要なトピックとなり、実際のビジネスシナリオで多くのアプリケーションを見つけました。
しかし、参加者の接地ラベルの漏れを防ぐ方法はよく研究されていない。
本稿では,オンラインビジネスアプリケーションにおける共通事例である,不均衡なバイナリ分類設定において,この質問に答えることを検討する。
まず,当事者間のコミュニケーション勾配のノルムを用いた単純な手法であるノームアタックが,参加者の接地ラベルをほとんど明らかにできることを示す。
次に,この問題を軽減するための保護手法について検討する。
そこで我々は,ラベル検出の最悪のエラーを直接最大化する原理的手法を考案した。
これは、通常の攻撃などに対してより効果的であることが証明されている。
提案手法の競合性は,他の複数のベースラインと比較して実験的に検証した。
関連論文リスト
- Training on Fake Labels: Mitigating Label Leakage in Split Learning via Secure Dimension Transformation [10.404379188947383]
ふたつのパーティ分割学習は、ラベル推論攻撃を生き残ることが証明されている。
そこで本稿では,既存のラベル推論攻撃を防御する二者分割学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T09:25:21Z) - LabObf: A Label Protection Scheme for Vertical Federated Learning Through Label Obfuscation [10.224977496821154]
Split Neural Networkは、プライバシー保護の特性から業界で人気がある。
悪意のある参加者は、アップロードされた埋め込みからラベル情報を推測するかもしれない。
本稿では,各整数値ラベルを複数の実数値ソフトラベルにランダムにマッピングする,LabObf'と呼ばれる新しいラベル難読化防衛戦略を提案する。
論文 参考訳(メタデータ) (2024-05-27T10:54:42Z) - Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning [59.44422468242455]
そこで我々はShrinkMatchと呼ばれる新しい手法を提案し、不確実なサンプルを学習する。
それぞれの不確実なサンプルに対して、元の Top-1 クラスを単に含むスランク類空間を適応的に求める。
次に、スランク空間における強と弱に強化された2つのサンプル間の整合正則化を課し、識別的表現を試みます。
論文 参考訳(メタデータ) (2023-08-13T14:05:24Z) - Partial-Label Regression [54.74984751371617]
部分ラベル学習は、弱い教師付き学習環境であり、各トレーニング例に候補ラベルのセットをアノテートすることができる。
部分ラベル学習に関する従来の研究は、候補ラベルがすべて離散的な分類設定のみに焦点を当てていた。
本稿では,各トレーニング例に実値付き候補ラベルのセットをアノテートした部分ラベル回帰を初めて検討する。
論文 参考訳(メタデータ) (2023-06-15T09:02:24Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Protecting Split Learning by Potential Energy Loss [70.81375125791979]
我々は、分割学習の前方埋め込みからのプライバシー漏洩に焦点を当てる。
我々は、前方埋め込みをより「複雑化」させるためのエネルギー損失の可能性を提案する。
論文 参考訳(メタデータ) (2022-10-18T06:21:11Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Defending Label Inference and Backdoor Attacks in Vertical Federated
Learning [11.319694528089773]
共同学習では、好奇心が強いパリティは正直かもしれないが、推論攻撃を通じて他人の個人データを推測しようとしている。
本稿では,サンプルごとの勾配から,プライベートラベルを再構築可能であることを示す。
本稿では、オートエンコーダとエントロピー正規化に基づく、混乱型オートエンコーダ(CoAE)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-10T09:32:09Z) - Long-tail learning via logit adjustment [67.47668112425225]
現実世界の分類問題は通常、不均衡または長い尾のラベルの分布を示す。
これは、そのようなラベルを一般化する上での課題であり、また、支配的なラベルに偏った「学習」をもたらさせる。
これらの課題に対処するために、標準的なソフトマックスクロスエントロピートレーニングの2つの簡単な修正を提案する。
論文 参考訳(メタデータ) (2020-07-14T19:27:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。