論文の概要: On the Convergence and Sample Efficiency of Variance-Reduced Policy
Gradient Method
- arxiv url: http://arxiv.org/abs/2102.08607v1
- Date: Wed, 17 Feb 2021 07:06:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 18:02:38.286338
- Title: On the Convergence and Sample Efficiency of Variance-Reduced Policy
Gradient Method
- Title(参考訳): 分散誘導政策勾配法の収束性とサンプル効率について
- Authors: Junyu Zhang, Chengzhuo Ni, Zheng Yu, Csaba Szepesvari, Mengdi Wang
- Abstract要約: 政策は、例えばREINFORCEのようなリッチな強化学習(RL)手法を生み出します。
しかし、そのようなメソッドが$epsilon$-optimal Policyを見つけるための最もよく知られたサンプルの複雑さは$mathcalO(epsilon-3)$である。
第一次政策最適化法の基本収束特性とサンプル効率について検討する。
- 参考スコア(独自算出の注目度): 38.34416337932712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Policy gradient gives rise to a rich class of reinforcement learning (RL)
methods, for example the REINFORCE. Yet the best known sample complexity result
for such methods to find an $\epsilon$-optimal policy is
$\mathcal{O}(\epsilon^{-3})$, which is suboptimal. In this paper, we study the
fundamental convergence properties and sample efficiency of first-order policy
optimization method. We focus on a generalized variant of policy gradient
method, which is able to maximize not only a cumulative sum of rewards but also
a general utility function over a policy's long-term visiting distribution. By
exploiting the problem's hidden convex nature and leveraging techniques from
composition optimization, we propose a Stochastic Incremental Variance-Reduced
Policy Gradient (SIVR-PG) approach that improves a sequence of policies to
provably converge to the global optimal solution and finds an
$\epsilon$-optimal policy using $\tilde{\mathcal{O}}(\epsilon^{-2})$ samples.
- Abstract(参考訳): 政策勾配は、例えばREINFORCEのようなリッチな強化学習(RL)手法をもたらす。
しかし、最も知られているサンプル複雑性の結果、$\epsilon$-optimalポリシーを見つけるための方法は$\mathcal{O}(\epsilon^{-3})$であり、これは準最適である。
本稿では, 1次ポリシー最適化法の基本収束特性とサンプル効率について検討する。
我々は、報酬の累積合計だけでなく、政策の長期訪問分布上の一般的なユーティリティ関数を最大化することができる政策勾配法の一般化変形に焦点を当てています。
この問題の隠蔽凸の性質を生かし, 構成最適化から手法を活用することにより, グローバル最適解に適切に収束する政策の系列を改善し, $\tilde{\mathcal{O}}(\epsilon^{-2})$サンプルを用いて$\epsilon$-optimal Policyを求める, 確率的増分誘導ポリシー勾配(SIVR-PG)アプローチを提案する。
関連論文リスト
- Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - Low-Switching Policy Gradient with Exploration via Online Sensitivity
Sampling [23.989009116398208]
一般非線形関数近似を用いた低スイッチングサンプリング効率ポリシ最適化アルゴリズム LPO を設計する。
提案アルゴリズムは,$widetildeO(fractextpoly(d)varepsilon3)$サンプルのみを用いて,$varepsilon$-optimal Policyを得る。
論文 参考訳(メタデータ) (2023-06-15T23:51:46Z) - Adaptive Policy Learning to Additional Tasks [3.43814540650436]
本稿では,事前訓練されたポリシーを調整し,本来のタスクを変更することなく追加タスクに適応するためのポリシー学習手法を開発する。
本稿では,適応政策グラディエント (APG) という手法を提案する。これはベルマンの最適性の原理と,収束率を改善するための政策勾配アプローチを組み合わせたものである。
論文 参考訳(メタデータ) (2023-05-24T14:31:11Z) - Sample Complexity of Policy-Based Methods under Off-Policy Sampling and
Linear Function Approximation [8.465228064780748]
政策評価には、オフ政治サンプリングと線形関数近似を用いる。
自然政策勾配(NPG)を含む様々な政策更新規則が政策更新のために検討されている。
我々は、最適なポリシーを見つけるために、合計$mathcalO(epsilon-2)$サンプルの複雑さを初めて確立する。
論文 参考訳(メタデータ) (2022-08-05T15:59:05Z) - Policy Gradient Method For Robust Reinforcement Learning [23.62008807533706]
本稿では,モデルミスマッチ下での頑健な強化学習のための大域的最適性保証と複雑性解析を用いた最初のポリシー勾配法を開発した。
提案手法は, 直接的政策パラメータ化の下で, 大域的最適勾配に収束することを示す。
次に、我々の方法論を一般のモデルフリー設定に拡張し、ロバストなパラメトリックポリシークラスと値関数を設計する。
論文 参考訳(メタデータ) (2022-05-15T17:35:17Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
最適化手法の優位性は、正確な勾配が用いられるかどうかに大きく依存することを示す。
次に,政策最適化におけるコミット率の概念を紹介する。
第三に、外部のオラクル情報がない場合には、収束を加速するために幾何を利用することと、最適性をほぼ確実に達成することとの間に本質的にトレードオフがあることが示される。
論文 参考訳(メタデータ) (2021-10-29T06:35:44Z) - Bregman Gradient Policy Optimization [97.73041344738117]
本稿では,Bregmanの発散と運動量に基づく強化学習のためのBregmanグラデーションポリシーの最適化を設計する。
VR-BGPOは、各イテレーションで1つの軌道のみを必要とする$epsilon$stationaryポイントを見つけるために、$tilde(epsilon-3)$で最高の複雑性に達する。
論文 参考訳(メタデータ) (2021-06-23T01:08:54Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (reps) は多くのシミュレーションと実世界のロボットドメインでポリシー学習に成功した。
勾配に基づく解法を用いる場合、REPSの性能には保証がない。
最適規則化ポリシーに好適な収束を維持するためのパラメータ更新を計算するために,基礎となる決定プロセスへの表現的アクセスを利用する手法を提案する。
論文 参考訳(メタデータ) (2021-03-17T16:22:59Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
Softmax Policy gradient(PG)メソッドは、現代の強化学習におけるポリシー最適化の事実上の実装の1つです。
ソフトマックス PG 法は、$mathcalS|$ および $frac11-gamma$ の観点から指数時間で収束できることを実証する。
論文 参考訳(メタデータ) (2021-02-22T18:56:26Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。