論文の概要: Unbiased Estimations based on Binary Classifiers: A Maximum Likelihood
Approach
- arxiv url: http://arxiv.org/abs/2102.08659v1
- Date: Wed, 17 Feb 2021 09:57:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 14:47:51.631704
- Title: Unbiased Estimations based on Binary Classifiers: A Maximum Likelihood
Approach
- Title(参考訳): Binary Classifiersに基づくアンバイアス推定:最大可能性アプローチ
- Authors: Marco J.H. Puts and Piet J.H. Daas
- Abstract要約: 正の項目の一定の割合でトレーニングされたバイナリ分類器は、正の項目の比率が異なるデータセットに適用するとバイアスをもたらす。
本稿では,データセットにおける正の正の正の正の正の正の比率を最大で推定し,合成および実世界のデータに対して検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Binary classifiers trained on a certain proportion of positive items
introduce a bias when applied to data sets with different proportions of
positive items. Most solutions for dealing with this issue assume that some
information on the latter distribution is known. However, this is not always
the case, certainly when this proportion is the target variable. In this paper
a maximum likelihood estimator for the true proportion of positives in data
sets is suggested and tested on synthetic and real world data.
- Abstract(参考訳): 正の項目の一定の割合でトレーニングされたバイナリ分類器は、正の項目の比率が異なるデータセットに適用するとバイアスをもたらす。
この問題に対処するためのほとんどのソリューションは、後者の分布に関する情報が知られていると仮定します。
しかし、この比率がターゲット変数である場合、これは必ずしもそうではない。
本稿では,データセットにおける正の正の正の正の正の正の比率を最大で推定し,合成および実世界のデータに対して検証する。
関連論文リスト
- Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
ユーザインタラクションデータとレコメンダシステム(RS)の2つの典型的なバイアスは、人気バイアスと肯定バイアスである。
項目と評価値の双方に影響される多因子選択バイアスについて検討する。
分散を低減し、最適化の堅牢性を向上させるため、スムースで交互に勾配降下する手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T12:18:21Z) - Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
統計的観点から「データセットバイアス」問題を考察する。
問題の主な原因は、クラス属性 u と非クラス属性 b の強い相関関係である。
本稿では,各試料nの目的をフラクタル1p(u_n|b_n)で重み付けするか,その試料をフラクタル1p(u_n|b_n)に比例してサンプリングすることにより,データセットバイアスを軽減することを提案する。
論文 参考訳(メタデータ) (2024-02-05T22:58:06Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
異なるユーザーは、非常に多くの異なるデータポイントを持っているかもしれない。
すべてのユーザが同じディストリビューションからサンプルを採取していると仮定することはできない。
本研究では,データの分布と量の両方でユーザデータが異なる異質なユーザデータの単純なモデルを提案する。
論文 参考訳(メタデータ) (2023-07-28T23:02:39Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
我々は、表現不足のバイアスによって破損したデータから学習する問題を考察する。
偏りのないデータの少ない場合、グループワイドのドロップアウト率を効率的に推定できることが示される。
本アルゴリズムは,有限VC次元のモデルクラスに対して,効率的な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-19T18:25:44Z) - Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization [80.54710259664698]
本稿では,クラスラベルを使わずに正確な分類器を学習することを目的とする。
まず、与えられたラベルのない集合から推定できる分類リスクの偏りのない推定器を導出する。
その結果、経験的リスクがトレーニング中に負になるにつれて、分類器が過度に適合する傾向があることが判明した。
実験により,本手法は,複数の未ラベル集合から学習する最先端の手法を効果的に緩和し,性能を向上することを示した。
論文 参考訳(メタデータ) (2022-07-04T16:22:44Z) - Bayes Classification using an approximation to the Joint Probability
Distribution of the Attributes [1.0660480034605242]
本研究では,テストサンプルの近傍の情報を用いて条件付き確率を推定する手法を提案する。
本稿では,カリフォルニア大学アーバイン校(UCI)の機械学習リポジトリから得られた幅広いデータセットに対する提案手法の性能について述べる。
論文 参考訳(メタデータ) (2022-05-29T22:24:02Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
本稿では, 様々なバイアスを伴うサンプルを用いたトレーニングが, 脱バイアスに不可欠であることを示す実験的検討を行った。
本稿では, 多様なバイアス分散サンプルを合成するために, 特徴レベルのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2021-07-03T08:03:25Z) - AutoDebias: Learning to Debias for Recommendation [43.84313723394282]
今回提案するtextitAotoDebiasは、他の(小さな)均一なデータセットを利用してデバイアスパラメータを最適化する。
我々は、AutoDebiasの一般化を導き、適切なデバイアス戦略を得る能力を証明する。
論文 参考訳(メタデータ) (2021-05-10T08:03:48Z) - Universal Off-Policy Evaluation [64.02853483874334]
ユニバーサルオフ政治推定器(UnO)への第一歩を踏み出す
我々は, 平均, 分散, 分位数/中間数, 分位数範囲, cvar, および累積分布全体の推定と同時結合に uno を用いる。
論文 参考訳(メタデータ) (2021-04-26T18:54:31Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
連続確率変数間の相互情報を推定することは、高次元データにとってしばしば難解で困難である。
近年の進歩は、相互情報の変動的下界を最適化するためにニューラルネットワークを活用している。
提案手法は,データサンプルペアが結合分布から引き出される確率を提供する分類器の訓練に基づく。
論文 参考訳(メタデータ) (2020-10-05T04:19:27Z) - Learning from Positive and Unlabeled Data with Arbitrary Positive Shift [11.663072799764542]
本稿では,未ラベルデータに対して任意の非表現陽性データであってもPU学習が可能であることを示す。
これを統計的に一貫した2つの手法に統合し、任意の正のバイアスに対処する。
実験により,多数の実世界のデータセットにまたがる手法の有効性が示された。
論文 参考訳(メタデータ) (2020-02-24T13:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。