論文の概要: Fully General Online Imitation Learning
- arxiv url: http://arxiv.org/abs/2102.08686v1
- Date: Wed, 17 Feb 2021 10:57:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 19:51:46.930215
- Title: Fully General Online Imitation Learning
- Title(参考訳): 完全なオンライン模造学習
- Authors: Michael K. Cohen, Marcus Hutter, Neel Nanda
- Abstract要約: 模倣学習では、模倣者とデモ者は、環境との過去の相互作用が与えられた行動を選択するためのポリシーです。
我々は、環境と実証者がトレーニングの目的さえもリセットしない、完全に一般的な設定に対処する。
我々の新しい保守的ベイズ模倣学習者は、利用可能な各アクションの確率を過小評価し、残りの確率でより多くのデータを求める。
- 参考スコア(独自算出の注目度): 20.2064416174307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In imitation learning, imitators and demonstrators are policies for picking
actions given past interactions with the environment. If we run an imitator, we
probably want events to unfold similarly to the way they would have if the
demonstrator had been acting the whole time. No existing work provides formal
guidance in how this might be accomplished, instead restricting focus to
environments that restart, making learning unusually easy, and conveniently
limiting the significance of any mistake. We address a fully general setting,
in which the (stochastic) environment and demonstrator never reset, not even
for training purposes. Our new conservative Bayesian imitation learner
underestimates the probabilities of each available action, and queries for more
data with the remaining probability. Our main result: if an event would have
been unlikely had the demonstrator acted the whole time, that event's
likelihood can be bounded above when running the (initially totally ignorant)
imitator instead. Meanwhile, queries to the demonstrator rapidly diminish in
frequency.
- Abstract(参考訳): 模倣学習では、模倣者とデモ者は、環境との過去の相互作用が与えられた行動を選択するためのポリシーです。
もし我々が模倣者を実行するなら、デモ参加者がずっと行動していた場合と同様の方法でイベントが展開されることを望んでいるでしょう。
既存の作業では、これを実現するための正式なガイダンスは提供されておらず、代わりに再起動する環境にフォーカスを限定し、異常に簡単に学習でき、ミスの重要性を便利に制限します。
私たちは、(確率的)環境とデモレーターが決してリセットされず、トレーニングの目的でさえ、完全に一般的な設定に対処します。
我々の新しい保守的ベイズ模倣学習者は、利用可能な各アクションの確率を過小評価し、残りの確率でより多くのデータを求める。
主な結果:もしデモ参加者がずっと行動していたら、イベントがありそうになかったら、そのイベントの確率は、代わりに(当初は全く無知な)イミテータを実行するときに、上から境界づけられる。
一方、デモレータへのクエリは、急速に周波数が低下する。
関連論文リスト
- Imitator Learning: Achieve Out-of-the-Box Imitation Ability in Variable
Environments [45.213059639254475]
我々は、模倣学習(ItorL)と呼ばれる新しいトピックを提案する。
これは、非常に限られた専門家のデモンストレーションに基づいて模倣ポリシーを再構築できる模倣モジュールを導出することを目的としている。
自律的な模倣ポリシー構築のために、我々は模倣ポリシーのためのデモベースアテンションアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-10-09T13:35:28Z) - Out-of-Dynamics Imitation Learning from Multimodal Demonstrations [68.46458026983409]
本研究では,実演者と模倣者が同じ状態空間を持つという仮定を緩和する,動的外模擬学習(OOD-IL)について検討する。
OOD-ILは、様々なデモ参加者のデモを利用するための模倣学習を可能にするが、新しい挑戦を導入する。
我々は,この新たな課題に取り組むために,より優れた伝達可能性測定法を開発した。
論文 参考訳(メタデータ) (2022-11-13T07:45:06Z) - Robustness of Demonstration-based Learning Under Limited Data Scenario [54.912936555876826]
実証に基づく学習は、限られたデータシナリオ下で事前訓練された言語モデルの能力を刺激する大きな可能性を示している。
実演と予測の間に明確な整合性がないため、なぜこのような実演が学習プロセスに有益なのかは不明だ。
本稿では,実証に基づくシーケンスラベリングの頑健さを深く掘り下げるために,標準情報から直感的に有用な情報を徐々に取り除き,病理デモを設計する。
論文 参考訳(メタデータ) (2022-10-19T16:15:04Z) - Robust Imitation of a Few Demonstrations with a Backwards Model [3.8530020696501794]
専門家によるデモンストレーションの行動クローニングは、強化学習よりもよりサンプル効率のよい学習ポリシーを高速化することができる。
実験の周囲のアトラクションの領域を拡大することで、エージェントがオフコースを走行した場合に、実証軌道に戻す方法を学ぶことができるようにすることで、この問題に対処する。
最適あるいは準最適の実証では、学習されたポリシーは、偏差に対して最適かつ堅牢であり、より広いアトラクション領域を持つ。
論文 参考訳(メタデータ) (2022-10-17T18:02:19Z) - Extraneousness-Aware Imitation Learning [25.60384350984274]
Extraneousness-Aware Learning (EIL)は、外部サブシーケンスを用いた第三者によるデモンストレーションから、ビズモタポリシーを学ぶ。
EILは、自己監督された方法で行動条件付き観察埋め込みを学習し、視覚的なデモンストレーション全体にわたってタスク関連観測を検索する。
実験の結果、EILは強いベースラインを上回り、完璧なデモで訓練した人たちと同等のポリシーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-10-04T04:42:26Z) - Sequential Causal Imitation Learning with Unobserved Confounders [82.22545916247269]
猿が猿を見なさい」とは、制度の根底にある仕組みを深く理解せずに「生」の模倣を指して、昔ながらの格言である。
本稿では、エピソード毎に複数の意思決定をしなければならないシーケンシャルセッティングにおける因果模倣学習の問題について検討する。
論文 参考訳(メタデータ) (2022-08-12T13:53:23Z) - A State-Distribution Matching Approach to Non-Episodic Reinforcement
Learning [61.406020873047794]
現実世界の応用への大きなハードルは、エピソード的な環境でのアルゴリズムの開発である。
提案手法は,提案する実証実験における状態分布に一致するように後方方針を訓練する手法である。
実験の結果,MEDALは3つのスパース・リワード連続制御タスクにおいて先行手法と一致し,性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-05-11T00:06:29Z) - Learning Feasibility to Imitate Demonstrators with Different Dynamics [23.239058855103067]
実演から学ぶことのゴールは、実演の動作を模倣してエージェント(模倣者)のポリシーを学ぶことである。
我々は、実演が模倣者によって実現可能である可能性を捉えた実現可能性指標を学習する。
シミュレーションされた4つの環境と実際のロボットを用いた実験により,本手法で学んだ方針が,従来よりも期待されたリターンを達成できることが判明した。
論文 参考訳(メタデータ) (2021-10-28T14:15:47Z) - Robust Maximum Entropy Behavior Cloning [15.713997170792842]
模倣学習(il)アルゴリズムは、特定のタスクを学ぶために専門家のデモンストレーションを使用する。
既存のアプローチのほとんどは、すべての専門家によるデモンストレーションは信頼性と信頼性を前提としていますが、もし与えられたデータセットに敵対的なデモが存在するとしたらどうでしょう?
敵対するデモを自律的に検出し、データセットから除外するデモからポリシーを直接生成する、新しい一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-04T22:08:46Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
トレーニングエージェントは通常、報酬機能が必要ですが、報酬は実際にはほとんど利用できず、エンジニアリングは困難で手間がかかります。
限定されたアノテーションから学習し,ラベルなしデータを含む半教師付き学習アルゴリズムを提案する。
シミュレーションロボットアームを用いた実験では,動作のクローン化が大幅に向上し,真理の報奨によって達成される性能に近づいた。
論文 参考訳(メタデータ) (2020-12-12T20:06:15Z) - State-Only Imitation Learning for Dexterous Manipulation [63.03621861920732]
本稿では,国家のみの模倣学習について考察する。
我々は、逆ダイナミクスモデルをトレーニングし、状態のみのデモンストレーションのアクションを予測するためにそれを使用します。
我々の手法は状態-作用アプローチと同等に動作し、RL単独よりもかなり優れています。
論文 参考訳(メタデータ) (2020-04-07T17:57:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。